• 제목/요약/키워드: flow profile

검색결과 1,070건 처리시간 0.024초

타원의 치형 형상을 갖는 로터 설계 자동화 시스템 개발 (Development of an Automated Design System for Oil Pumps with Ellipse Lobe Profile)

  • 정성윤;한승무;김철
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.120-129
    • /
    • 2009
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobes with elliptical shape, while the inner rotor profile is determined as conjugate to the other. And the integrated system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

비정상 자연대류에 의한 온도성층화의 동특성에 관한 연구 (Dynamic Characteristics of Thermal Stratification Build-up by Unsteady Natural Convection)

  • 강보선;이준식;이택식;노승탁
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.382-394
    • /
    • 1988
  • Dynamic characteristics of thermally-forced stratification process in a square enclosure with a linear temperature profile at the side walls have been investigated through flow visualization experiment and numerical analysis. The experiment was performed on air with the Rayleigh numbers of order $10^5$. A particle tracer method is used for the flow visualization and to obtain a sudden linear temperature profile at the side walls copper blocks which already have a linear temperature profile are come into contact with the thin copper plates of the test section. Immediately a meridional circulation is developed and heat transfer takes place from the wall to the interior region by circulation of fluid and finally a thermal stratification is achieved. In the numerical study, QUICK scheme for convective terms, SIMPLE algorithm for pressure correction, and the implicit method for the time marching are adopted for the integration of conservation equations. Comparison of flow visualization and numerical results shows that the developing flow patterns are very similar in dynamic nature even though there is a time lag due to the inevitable time delay in setting up a linear temperature profile. For high Rayleigh numbers, the oscillatory motion is likely to take place and stratified region is extended. However, initial temperature adjustment process is much slower than that for low Rayleigh numbers.

  • PDF

타원 1-인벌루트-타원 2 형상을 조합한 새로운 형 제로터 개발 (Development of a New Gerotor for Oil Pumps with Multiple Profiles(Ellipse1, Involute and Ellipse2))

  • 정성윤;김문생;김철
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.614-622
    • /
    • 2011
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with multiple profile(ellipse1, involute and ellipse2) shapes, while the inner rotor profile is determined as conjugate to the other. Also, the design of outer rotor depends on new applications with removing carryover phenomenon. The system generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. In order to obtain rotor shapes in performance and to find optimize the design parameters, a Taguchi method is proposed in this paper. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

천이류에서의 관마찰 (Pipe Friction in Transition Flow)

  • 유동훈
    • 대한토목학회논문집
    • /
    • 제13권4호
    • /
    • pp.101-109
    • /
    • 1993
  • 관로흐름은 관벽과의 마찰 정도에 따라 층류와 난류, 난류인 경우 관벽은 매끄러운관 또는 완난류(緩亂流)(smooth turbulent flow) 조건과 거칠은 관 또는 전난류(全亂流)(rough turbulent flow) 조건으로 뚜렷이 대별할 수 있으며 층류와 완난류의 변이부에 해당하는 층류-완난류 천이조건 즉 천이층류(遷移層流)와 완난류-전난류 변이부 즉 천이난류(遷移亂流) 등 모두 다섯 개의 조건으로 구분지어 해석할 수 있다. 층류, 완난류 및 전난류 조건에서의 마찰계수 산정에는 기존 Prandt1의 이론식에 상당한 신뢰를 두고 있으나 천이난류에서의 마찰계수산정에 쓰고 있는 Colebrook-white 조합식은 이의 정도에 많은 의문점을 두어 왔다. 본 연구에서는 Nikuradse의 실험결과를 재 분석하여 천이난류조건에서의 유속분포식을 구하였으며, 이에 근거하여 관로에서 천이난류조건에 대한 마찰계수 산정식을 개발하였다. 천이층류에 대하여는 마찰계수를 내삽법으로 구할 것을 제의한다.

  • PDF

터빈 동익의 프로파일 정의 위치에 따른 초음속 터빈 성능변화에 대한 전산해석 연구 (Numerical Study of the Supersonic Turbine Performance Variation with respect to the Rotor Profile Diameter)

  • 박편구;정은환;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.297-301
    • /
    • 2007
  • 초음속 충동형 터빈과 같이 종횡비가 작은 경우 로터 익형은 반경방향으로 동일한 단면을 갖는 형태로 구현된다. 이 경우 터빈 로터는 터빈 동익의 프로파일 직경에 따라 설계에서 의도하지 않은 유로면적분포와 터빈 성능의 차이를 보인다. 본 연구에서는 터빈 동익 프로파일을 정의하는 직경이 터빈 성능에 미치는 영향을 고찰하기 위하여 3개의 다른 위치에서 정의된 터빈 로터에 대한 유동해석을 수행하고 결과를 고찰하였다. 계산 결과 팁에서 단면이 정의된 경우 설계에서 의도한 유로면적 변화를 보이며 다른 프로파일 직경에서 정의된 터빈에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

Simulation of flow-induced cavity resonance with turbulence models

  • Jang K S.;Park S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.110-112
    • /
    • 2003
  • A numerical simulation of an incompressible cavity flow is conducted using turbulence models. Cavity geometry and flow conditions are based on Cattafesta's experiment. Baldwin-Lomax model and ${\kappa}-{\varpi}$ model are employed. While simulation with Baldwin-Lomax model predicts the oscillatory features of the flow, the use of ${\kappa}-{\varpi}$ model in its original form makes the simulation converge to steady flow. To acquire oscillatory flow solution, Kato-Launder form and Time scale bound are adopted in production term of ${\kappa}-{\varpi}$ model. The strouhal number of the flow oscillations from the simulation results corresponds to 1 st mode in simulation but 2 nd mode in experiments. However mean velocity profile is in good agreement with the experimental data and the fluctuation profile follows the tendency of Cattafesta's results.

  • PDF

균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교 (Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow)

  • 김진;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(1) - 문제의 제기 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(1) - Raising Issue)

  • 박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.88-96
    • /
    • 2015
  • This paper is the first investigation on the evaluation methods of flow characteristics in the steady bench. For this purpose, several assumptions used in the steady flow evaluation are examined, comparing the measured and/or processed results by the conventional impulse swirl meter with the ones by the real velocity through a particle image velocimetry. The results show that the most questionable assumption is the solid rotation of swirl. With regard to this assumption, the flow characteristics by the conventional methods are distorted seriously by both of the eccentricity of the swirl center and non-uniform velocity profile along the cylinder radial direction. In addition, the cylinder axial velocity distribution also has the great effect on the flow characteristics.

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제9권5호
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.