• Title/Summary/Keyword: flow production system

Search Result 678, Processing Time 0.028 seconds

A Comparative Analysis of the Fixed Location Production vs. Flow Production: An Example of Deckhouse Preceding Outfit Process (고정 위치 생산과 흐름생산의 비교 분석 : 데크하우스 선행의장 공정의 사례)

  • Kim, Yearnmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.75-81
    • /
    • 2016
  • By using simulation, fixed location production method and flow production method have been compared to improve the productivity of deckhouse preceding outfitting process. In this paper, we analyze that the suggested flow production system instead of fixed location production can improve productivity. In current preceding outfit production system which adopts fixed location production, where a block occupies an area and does not move until the work finishes. On the other hand, in improved flow production system, the block moves instead of workers and equipment. Though the output of two systems are almost the same when we did not consider the moving time and waiting time of blocks, the flow production will be better when the variability of task time will be reduced.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

Mixed Model Assembly Line-Balancing Using Simulation (시뮬레이션을 이용한 혼합모델 조립라인밸런싱)

  • 임석진;김경섭;박면웅;김승권
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.69-80
    • /
    • 2002
  • This study deals with the productivity improvement on a flow production system with the consideration of line-balancing. In a flow production system, similar product models are produced on a same assembly line, the predefined process order and the limitation of total worker number. The system can be increased the work-in -process(WIP) inventory and the worker's idle time. In this study, the worker assignment model is developed to assign evenly workload of process to each product model in such a manner that each process has the different number of worker. This worker assignment model is the mathematical model that determines worker number in each process such that the idle time of processes is reduced and the utilization of worker is improved. We use a simulation technique to simulate the production line proposed by the mathematical model and apply real production line. With the result of simulation, this study analyzes the propriety of production line and proposes the alternatives of new production line

  • PDF

Nodal Analysis of Optimum Operating Condition on Gathering System Considering Coalbed Methane Production Characteristics (석탄층 메탄가스 생산 특성을 고려한 포집시스템 최적 운영조건 노달분석)

  • Jung, Woodong;Cho, Wonjun;Lee, Jeseol;Yu, Hyejin;Seomoon, Hyeok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • Coalbed methane has a nonlinear desorption curve depending on the pressure, so an appropriate production system should be constructed considering this phenomenon. The capacity and specification of the coalbed methane gas production facility are determined by the gas flow rate and pressure in the coalbed, which is the external boundary condition of the system. Thus, it is essential to analyze these characteristics in gas production. The gas inflow equation was calculated using the reservoir flow model and utilized as the boundary condition of the whole production facility in this study. Also, to understand the effect of pressure drop on the gas flow in the production facility, the nodal analysis was performed using the flow analysis simulator of production equipment, and we determined the proper specifications and operating conditions of the production facility. This study presents a design criteria as to production and gathering system capable of effectively transporting coalbed methane.

A Case-Study of Implementing Lean Production System in Manufacturing Electronic Components (전자부품 생산 Line에 있어서 Lean 생산방식 적용에 대한 실증적 고찰)

  • Lee, Sang-Cheon;Wang, Jung-Il
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.468-479
    • /
    • 1999
  • Lean production system can be defined as customer(product)-oriented production system with small lot size and flow-shop layout based on the JIT(Just-in-time) principles. In this paper, we introduce a case example of implementation of the Lean product ion system for manufacturing line of electronic component which has both machine processes and manual jobs. We also investigate the issues of implementing the Lean production system with the viewpoints of layout design scheme and JIT management rules. In the layout design, we propose the cell-line which has flow-shop layout with small lot size. In the management rules, the superior cell rule is applied in order to boost the needs of kaisen up. As the results of implementing the Lean production system, production lead time is decreased from 5 days to 1.5 days and also productivity and quality level arc surprisingly increased.

  • PDF

Development of a Parametric Simulation Model by a Model Integration Method for Production System with Robots (모델 접속 기법에 의한 로봇 응용 생산시스템의 파라메트릭 시뮬레이션모델 개발)

  • Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.136-148
    • /
    • 1995
  • In this study, a model integration method is pressented as a new method for development of a parametric simulation model. This method enable us to integrate the special simulation models for each production subsystem into a large simulation model. Not only this large simulation model but also each special simulation model for each production subsytem can be used independently. Using this integration method man can reduce the development time and cost for simulation model development. To show the usefulness of this method, a simulation model for a production system with robots is developed by this model integration method. This simulation model is realized by the integration of two special simulation models, one model for a machining subsystem and the other model for a transport subsystem. The modeled production system consists of the robotic cells for machining and a transport subsystem which enable the material flow among the robotic cells. The flow of workpiece in each robotic cell is not fixed. All machines in a robotic cell are only served by robots.

  • PDF

Activity-oriented Modeling of Mass Production System (대량생산 체제의 Simulation을 위한 Activity 중심 Modeling)

  • Choe, Byeong-Gyu;Park, Seong-Ju;Sin, Ha-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.119-131
    • /
    • 1986
  • Described in this paper is a modelling methodology for mass production system simulation. The mass production system under consideration consists of various types of flow lines, special purpose production facilities, conveyor lines, palletized carts, and storage facilities. This type of production system is typical in home appliance industry, automobile industry, footwear industry, etc. where a variety of product mix are mass-produced. The modelling methodology is based on the "discrete-event formalism", and an "activity-oriented world view" is adopted to formalize the system description. A distinctive feature of the modelling methodology is that only the static structure (ie, system components) is included in the fixed model. The dynamic structure of the system is specified through a "data-driven" mechanism, which is an extension of the "experimental frame" concept. Each type of system components (ie, flow line, conveyors, carts, etc.) is formally modeled by using Activity Cycle Diagrams. The issue of "model structuring" is also addressed. The modeling methodology has been successfully applied in a real simulation study of a mass production system.

  • PDF

Scheduling in Flexible Manufacturing System with Flow Type (흐름작업장 형태를 따르는 유연 생산시스템에서의 일정계획)

  • 장석화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.97-103
    • /
    • 1991
  • This paper deals with a scheduling problem with the objective of maximizing the throughput rate in flexible manufacturing system with shop type. Manufacturing system is consisted of multi-stage in series. All kinds of parts are processed in same in processing time. No buffer space is allowed between stages, and no part waiting is allowed in each stage. Part flow control method for determining the optimal production sequence of all parts and the production starting time of each part is proposed.

  • PDF

Asynchronous Waste: An Alternative Performance Measure for Pull Production Control System

  • Kim, ll-hyung
    • Management Science and Financial Engineering
    • /
    • v.6 no.1
    • /
    • pp.37-63
    • /
    • 2000
  • An important objective of pull-based production control is to achieve synchronized and smooth production flow in a multi-stage system that is subject to uncertainty. To our knowledge, previous research has not generated a performance measure that captures this objective of pull-based probased production control system. This performance material with respect to the instant when the operation is required. We examine the issue of asynchronous waste in a two-stage kanban control system.

  • PDF

Bottleneck Detection Based on Duration of Active Periods (생산 활동기간 기반 애로공정의 발견)

  • Kwon, Chi-Myung;Lim, Sanggyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • This paper applies an active period based bottleneck detection method to flow shop manufacturing system with limited buffer size. Manufacturing systems are constrained by one or more bottlenecks which degrades the system throughput. Conventional bottleneck detection methods include the waiting time or queue length of production stations and their utilization. Due to the random events such as production time of items, machine failure and repair times, the systems may change over time, and subsequently bottlenecks shift from one station to another station. Active period of working station may cause other stations to wait for productions. Information when and where active periods occur helps to find bottlenecks in production systems. Based on these informations, we predict bottlenecks in applying AweSim simulation language. We compare the simulation results of conventional methods with those obtained from duration of active period method, and duration ratio method of both sole and shift bottleneck periods. Even though simulation results are from simple flow shop model, they are quite promising for predicting bottlenecks of production stations. We hope this study aids in decision making regarding the improving system production yield and allocation of available resources of system.