• 제목/요약/키워드: flow model

검색결과 12,994건 처리시간 0.036초

Finite element analysis of 2D turbulent flows using the logarithmic form of the κ-ε model

  • Hasebe, Hiroshi;Nomura, Takashi
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.21-47
    • /
    • 2009
  • The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence variables as ${\kappa}$ and ${\varepsilon}$ of the ${\kappa}-{\varepsilon}$ model by using the natural logarithm of these variables. In the present study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady turbulent flow analysis. A backward facing step flow using the standard ${\kappa}-{\varepsilon}$ model and a flow around a 2D square cylinder using the modified ${\kappa}-{\varepsilon}$ model (the Kato-Launder model) are simulated. These results show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the analysis stable during transient or unsteady processes.

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

부등류해석을 이용한 QUAL2E 모형의 개선 (Improvement of QUAL2E Model using Nonuniform Flow Analysis)

  • 김상호;최현상
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1144-1150
    • /
    • 2006
  • Recently, as water pollution accidents in rivers have increased, there is an increased interest in water quality forecast with accurate simulation. QUAL2E model, widely used for water quality analysis, uses the same hydraulic characteristics, such as depth and velocity, in a reach. The flow of the river is changed by various hydraulic constructions or by topography in a real river channel. In this study, a hydraulic connection module is developed to consider flow variations of river channels in QUAL2E model. The module uses the simulations results of non-uniform flow of a 1-D hydraulic model such as DWOPER or HEC-RAS. The improved QUAL2E model with this module was applied to a downstream section of Paldang Dam on the Han River. The results show the variation of water quality very well in a reach where flowing vary abruptly, like the Jamsil submerged weir.

3차원 난류 벽면제트 유동의 수치해석 (Numerical analysis of a three-dimensional turbulent wall-jet flow)

  • 유승엽;최도형;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.479-484
    • /
    • 2000
  • A Navier-stokes based finite volume method has been developed to analyze an incompressible, steady state, turbulent wall-jet flow. The standard k-e model, the RNG ${\kappa}-{\varepsilon}$ model and their nonlinear counterparts are adopted as a closure relationship. Comparison with the experimental data shows that a linear ${\kappa}-{\varepsilon}$ model performs satisfatorily for two-dimensional wall-jet flows. However, as the flow becomes three dimensional, the linear model fails to predict the spanwise jet growth accurately and the nonlinear model needs to be adopted to capture three-dimensional flow characteristics.

  • PDF

EXTENSION OF AUSMPW+ SCHEME FOR TWO-FLUID MODEL

  • Park, Jin Seok;Kim, Chongam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.209-219
    • /
    • 2013
  • The present paper deals with the extension of AUSMPW+ scheme into two-fluid model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+ scheme by designing pressure-based weighting functions to prevent oscillations near a wall and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S. Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simulations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase AUSMPW+ did not provide satisfactory results for most of numerical test cases, which motivates the current study. It turns out that, by designing pressure-based weighting functions, which play a key role in controlling numerical diffusion for two-fluid model, problems reported in can be overcome. Various numerical experiments validate the proposed modification of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of two-fluid model.

균일대수층내 지하수 유동에 관한 정상류의 이중공극 프락탈 모델 (Stationary Dual-Porosity Fractal Model of Groundwater Flow in Fractured Aquifers)

  • 함세영
    • 지질공학
    • /
    • 제4권2호
    • /
    • pp.127-138
    • /
    • 1994
  • 균일 암반내 지하수 유동은 프락탈 성질의 균열 분포에 영향을 받으므로 정상류 이중 공극 모델로는 균열 암반 대수층의 수리지질학 성질을 설명하기가 어렵다. 본 연구에서는 새로운 정상류 이중공극 프락탈 모델이 제안되었다. 본 모델은 블록으로부터 균열로의 정상류를 포함하는 프락탈 대수층을 모식화한 것이다. 아울러 본 모델은 양수정의 우물저장효과와 우물손실효과를 고려하는 것이다. 여러가지 흐름의 차원과 여러가지 값이 배출계수에 대한 표준곡선들이 만들어졌다.

  • PDF

Numerical simulation of flow past 2D hill and valley

  • Chung, Jaeyong;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2004
  • Numerical simulation of flow past two-dimensional hill and valley is presented. Application of three turbulence models - the standard and modified (Kato-Launder) $k-{\varepsilon}$ models and standard $k-{\omega}$ model - is discussed. The computational methodology is briefly described. The mean velocity and turbulence intensity profiles, obtained from numerical simulations of flow past the hill, are compared with the experimental data acquired in a boundary-layer wind tunnel at Colorado State University. The mean velocity, turbulence kinetic energy and Reynolds shear stress profiles from numerical simulations of flow past the valley are compared with published experimental data. Overall, the results of simulations employing the standard $k-{\varepsilon}$ model were found to be in a better agreement with the experimental data than those obtained using the modified $k-{\varepsilon}$ model and the $k-{\omega}$ model.

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (III) -The Time-Varying States of the Flow Pattern and Water Exchange in Barotropic Rotating Model-

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.260-268
    • /
    • 1998
  • A flow pattern and water exchange in Sagami Bay is examined using a barotropic hydraulic model. In the model experiments, the volume transports of the Kuroshio Through Flow were changed with time. The results of the model experiments show that when the volume transport is increased with time, water mass and vorticity are transferred to the inner part of the bay by wakes from the western part of the bay. In the case of decrease, as the wakes are ceased, the inner cyclonic circulation water is discharged to the outside of the bay by its southward extension through the Oshima eastern channel. It is found that the water exchange by the short-term variation of volume transport in time is about 20% of all the bay water.

  • PDF

수치 모델에 따른 압전 구동방식 마이크로 펌프의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Piezoelectric Micropumps with Different Numerical Models)

  • 정진;김동희;김창녕
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.707-713
    • /
    • 2004
  • A numerical analysis has been conducted for flow characteristics of piezoelectric micropumps. In the present study, FSI (Fluid-Structure Interaction) model and grid deform model have been employed for each of two different geometries of the micropumps with two different frequencies in the piezoelectric diffuser/nozzle based micropumps. The displacement of piezo disk and flow rates have been closely examined at the inlet and outlet. It has been found that the motion of the piezo disk investigated with FSI model is not in accordance with that with grid deform model. The results show that the time averaged flow rate calculated with FSI model is larger than that with grid deform model. This study presents the performance analysis of piezoelectric micropumps with two different numerical models for different types of pumps.

터빈 사이클의 보정 성능 계산을 위한 급수 유량의 검증 모델 (Verification Model of the Feedwater Flow for the Calculation of Corrective Performance of Turbine Cycle)

  • 김성근;양학진;이강희;최광희
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.538-544
    • /
    • 2012
  • Analysis of thermal performance is required for the economic operation of turbine cycle of power plant. We developed corrective model of main feed water flow which is the most important parameter for the precise analysis of turbine cycle performance. Classification model for the identification of feed water flow measurement status was applied to increase the suitability of the corrective model. We used neural network and support vector machine to develop estimation model of main feed water flow with more generalization capability. The estimation model can be used practically to evaluate corrective performance of turbine cycle plant.