• 제목/요약/키워드: flow model

검색결과 12,994건 처리시간 0.036초

부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석 (Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect)

  • 손창현;안성태;장재환
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

Numerical analysis of viscoelastic flows in a channel obstructed by an asymmetric array of obstacles

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • 제18권3호
    • /
    • pp.161-167
    • /
    • 2006
  • This study presents results on the numerical simulation of Newtonian and non-Newtonian flow in a channel obstructed by an asymmetric array of obstacles for clarifying the descriptive ability of current non-Newtonian constitutive equations. Jones and Walters (1989) have performed the corresponding experiment that clearly demonstrates the characteristic difference among the flow patterns of the various liquids. In order to appropriately account for flow properties, the Navier-Stokes, the Carreau viscous and the Leonov equations are employed for Newtonian, shear thinning and extension hardening liquids, respectively. Making use of the tensor-logarithmic formulation of the Leonov model in the computational scheme, we have obtained stable solutions up to relatively high Deborah numbers. The peculiar characteristics of the non-Newtonian liquids such as shear thinning and extension hardening seem to be properly illustrated by the flow modeling. In our opinion, the results show the possibility of current constitutive modeling to appropriately describe non-Newtonian flow phenomena at least qualitatively, even though the model parameters specified for the current computation do not precisely represent material characteristics.

담수호 저층배수시설 방류구 위치선정을 위한 저층방류수 해양수중 혼합특성해석

  • 박영욱;구본충;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.272-277
    • /
    • 2005
  • Initial mixing characteristics in near field regions were analyzed by FLOW-3D, for analyzing mixing behavior of submerged discharge from freshwater lake in sea water. FLOW-3D model was applied to the region near Geum-ho dike for its verification. Simulation results from FLOW-3D were compared to the observed data for the verification periods. FLOW-3D showed resonable prediction results compared to the observed data, except underestimation in area near outfall. Particularly, FLOW-3D showed a good prediction for movement of buoyancy jets. In addition, FLOW-3D model was applied to the region near Saemangeum dike, which is to be constructed in near future. It was expected that the results of model application to Saemangeum area could provide substantial information in planning submerged discharge facilities. Based on the model applications to Saemangeum area, it was recommended that outfall should be located to the distance which gave an enough depth of outfall from water surface.

  • PDF

모델 가스터빈 연소기에서 등온 선회유동의 대 와동 모사 (Large Eddy Simulation of an Isothermal Swirling Flow in a Model Gas Turbine Combustor)

  • 황철홍;이창언
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.462-468
    • /
    • 2004
  • Large eddy simulation(LES) methodology used to model isothermal non-swirling and swirling flows in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code and characterize swirling flow, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using k -$\epsilon$ model as well as experimental data. The results showed that the LES and RANS well predicted the mean velocity field of a non-swirling flow. Specially, the LES showed a very excellent prediction performance for the corner recirculation zone. In swirling flow, comparing with the results obtained by RANS, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone. Finally, unsteady phenomena of turbulent flow was examined with LES methodology.

  • PDF

단면의 폭이 증가하는 $180^\circ$ 곡덕트 내 난류유동의 수치해석적 연구 (Numerical Study on the Turbulent Flow in the $180^\circ$ Bends increasing Cross-sectional Aspect Ratio)

  • 김원갑;김철수;최영돈
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.804-810
    • /
    • 2004
  • This paper reports the characteristics of the three dimensional turbulent flow by numerical method in the 180 degree bends with increasing cross-sectional area. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number $textsc{k}$-$\varepsilon$ model and algebraic stress model(ASM). The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend and vortices are continually developed at the inner wall region. The distribution of turbulent kinetic energy along the bend are increase up to 120$^{\circ}$ because of increment of cross-sectional area. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

원형 디스크 주위 유동에 대한 RANS 유동해석 비교 연구 (Comparative study of flow over a circular disk using RANS turbulence models)

  • 유남규;김병재
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.88-93
    • /
    • 2021
  • For a flow normal to a circular disk, the flow separation occurs from the edge of the disk and the flow recirculation zone exists behind the disk. Many existing studies conducted simulations of flow normal to a circular disk under low Reynolds numbers. Some studies performed LES or DES simulations under high Reynolds numbers. However, comparative study for different RANS models for high Reynolds numbers is very limited. This study presents numerical simulations of a flow normal to a circular disk using Realizable k-ε model and SST k-ω model. The recirculation bubble length and drag coefficient were compared with the experimental data. The SST k-ω model showed the excellent predictions for the recirculation bubble length and drag coefficient.

하천 내 유사와 인 이동에 관한 모델링 (Modeling of Sediment and Phosphorous Transport in a River Channel)

  • 김경현
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.332-342
    • /
    • 2010
  • A model has been developed to investigate in-river sediment and phosphorus dynamics. This advective-dispersive model is coupled with hydrodynamics and sediment transport submodels to simulate suspended sediment, total dissolved phosphorus, total phosphorus, and particulate phosphorus concentrations under unsteady flow conditions. It emphasizes sediment and phosphorus dynamics in unsteady flow conditions, in which the study differs from many previous solute transport studies, conducted in relatively steady flow conditions. The diffusion wave approaximation was employed for unsteady flow simulations. The first-order adsorption and linear adsorption isotherm model was used on the basis of the three-layered riverbed submodel with riverbed sediment exchange and erosion/deposition processes. Various numerical methods were tested to select a method that had minimal numerical dispersion under unsteady flow conditions. The responses of the model to the change of model parameter values were tested as well.

역압력구배 영향을 고려한 저레이놀즈수 k-ε 모형의 소산율 방정식 수정 (Modification of Dissipation Rate Equation of Low Reynolds Number k-ε Model Accounting for Adverse Pressure Gradient Effect)

  • 송경;조강래
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1399-1409
    • /
    • 1999
  • It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.

배치식 터널 건조기의 고추 건조 시뮬레이션 모델 연구 (Simulation Model for Drying Characteristics of Batch-type Tunnel Dryer)

  • 황규준;고학균;홍지향;김종순
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.89-96
    • /
    • 2000
  • In this study, experiments were performed for various drying air temperatures, air flow rates tray distance to analyze drying characteristics of batch type tunnel dryer. In comparison of tunnel drying with cabinet drying which is currently used in the farm, the results of drying simulation model of cabinet dryer was used and then the possibility of applying the drying simulation model of cabinet dryer to batch type tunnel dryer was investigated. The results showed that as the drying temperature increased, the drying rte and moisture difference in the direction of air flow increased and as the air flow rate increased, the drying rate increased and moisture differences decreased. In tunnel dryer, drying through bottom of the tray had large effect on drying rate and the effect was more significant when the drying temperature increased. As air flow rate increased, the difference of drying rates between tunnel and cabinet drying increased and drying rate of tunnel of drying was higher. The drying simulation model could estimate moisture content in tunnel more precisely by using modified effective moisture diffusion coefficient for air flow rate.

  • PDF

벽-유동(Wall-Flow) 모노리스(Monolith) 디젤 입자상물질 필터 트랩의 재생모델에 의한 수치 시뮬레이션 (Computational Simulation by One-Dimensional Regeneration Model of Wall-Flow Monolith Diesel Particulate Filter Trap)

  • 김광현;박정규
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.41-54
    • /
    • 1995
  • A mathematical model for wall-flow monolith ceramic diesel particulate filter was developed in order to describe the processes which take place in the filter during regeneration. The major output of the model comprises ceramic wall temperature and regeneration time(soot reduction). Various numerical tests were performed to demonstrate how the gas oxygen concentration, flow rate and the initial particulate trap loading affect the regeneration time and peak trap temperature. The model is shown to b in reasonable agreement with the published experimental results. This model can be applied to predict the thermal shock failure due to high temperature during combustion regeneration process.

  • PDF