Modeling of Sediment and Phosphorous Transport in a River Channel

하천 내 유사와 인 이동에 관한 모델링

  • Received : 2009.12.20
  • Accepted : 2010.01.22
  • Published : 2010.03.30

Abstract

A model has been developed to investigate in-river sediment and phosphorus dynamics. This advective-dispersive model is coupled with hydrodynamics and sediment transport submodels to simulate suspended sediment, total dissolved phosphorus, total phosphorus, and particulate phosphorus concentrations under unsteady flow conditions. It emphasizes sediment and phosphorus dynamics in unsteady flow conditions, in which the study differs from many previous solute transport studies, conducted in relatively steady flow conditions. The diffusion wave approaximation was employed for unsteady flow simulations. The first-order adsorption and linear adsorption isotherm model was used on the basis of the three-layered riverbed submodel with riverbed sediment exchange and erosion/deposition processes. Various numerical methods were tested to select a method that had minimal numerical dispersion under unsteady flow conditions. The responses of the model to the change of model parameter values were tested as well.

Keywords

References

  1. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. (1984). Computational Fluid Mechanics and Heal Transfer, McGraw-Hill. New York.
  2. Aral, M. M., Zhang, Y., and Jin, S. (1998). Application of relaxation scheme to wave propagation simulation in open-channel networks. J. Hyd. Engr., ASCE, 124(11), pp. 1125-1133. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:11(1125)
  3. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). Large area hydrologic modeling and assessment; part I: model development. J. Am. Water Resour. Assoc., 34(1), pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  4. Crockford, R. H. and Willett, I. R. (2000). The Maude Weir Sediments. I. Desorption and sorption of phosphorus. and related changes in mineral magnetic properties after desorption. Hydrol. Process., 14, pp. 2383-2392. https://doi.org/10.1002/1099-1085(20001015)14:14<2383::AID-HYP961>3.0.CO;2-F
  5. Di Toro, D. M., Fitzpatrick, J. J., and Thomann, R. V. (1981. rev. 1983). Water Quality Analysis Simulation Program (WASP) and Model Verification Program (MVP) - Documentation. Hydroscience, Inc., Westwood, NY, for U.S. EPA, Duluth, MN, Contract No. 68-01-3872.
  6. Jakeman, A. J., Green, T. R., Beavis. S. G., Zhang, L., Dietrich, C. R., and Crapper, P. F. (1999). Modelling upland and instream erosion, sediment and phosphorus transport in a large catchment. Hydrol. Process., 13, pp. 745-752. https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<745::AID-HYP777>3.0.CO;2-E
  7. Kim, K. (2005). Sediment and phosphorus transport in a river channel under unsteady now conditions. USA, Ph.D. dissertation, Univ. of IIlinois-UC, Urbana, IL.
  8. Kim, K., Kalita, P. K., Bowes, M. J., and Eheart, J. W. (2006). Modeling of river dynamics of phosphorus under unsteady flow conditions. Water Resour. Res., 42. W07413, doi:10.1029/2005WR004210.
  9. Novotny, V., Tran, H., Simsiman, G. V., and Chesters, G. (1978). Mathematical modeling of land runoff contaminated by phosphorus. Journal WPCF. pp. 101-112.
  10. Sharpley, A. N., Kleinman, P. J. A., McDowell, R. W., Gitau. M., and Bryant, R. B. (2002). Modeling phosphorus transport in agricultural watersheds: Processes and possibilities. J. Soil and Water Conser., 57(6), pp. 425-439.
  11. Singh, V. P. (1996). Kinematic Wave Modeling in Warer Resources: Surface-Water Hydrology, John Wiley and Sons, New York.
  12. van Nlekerk, A., Vogel, K. R., Slingerland, R. L., and Bridge, J. S. (1992). Routing or heterogeneous sediments over movable bed: Model development. J. Hyd. Engr., ASCE, 118(2), pp. 247-262.
  13. van Rijn, L. C. (1984). Sediment transport. part II: suspended load transport. J. Hyd. Eng., ASCE, 110(11), pp. 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  14. Wade, A. J., Hornberger, G. M., Whitehead, P. G., Jarvie, H. P., and Flynn, N. (2001). On modeling the mechanisms thai control in-stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis. Waler Resow. Res., 37(11), pp. 2777-2792. https://doi.org/10.1029/2000WR000115
  15. Zhang, R., Huang. K., and van Genuchten, M. T. (1993). An efficient Eulerian-Lagrangian method for solving solute transport problems in steady and transient now fields. Waler Resour. Res., 29(12), pp. 4131-4138. https://doi.org/10.1029/93WR01674
  16. Zhang, Y, and Aral, M, M. (2004). Solute transport in open-channel networks in unsteady flow regime. Environ. Fluid Mech., 4(3). pp. 225-247.
  17. Ziegler, C. K. and Lick, W. (1986). A numerical model of the resuspension, deposition and transport of fine-grained sediments in shallow water, UCSB Rep. ME-86-3, University of California, Santa Barbara, CA.
  18. Ziegler, C. K. and Nisbet, B. S. (1994). Fine-Grained Sediment Transport in Pawtuxet River. Rhode Island. J. Hyd. Engr., ASCE, 120(5), pp. 561-576. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:5(561)