• Title/Summary/Keyword: flow model

Search Result 12,978, Processing Time 0.036 seconds

Improvement and validation of a flow model for conical vortices

  • Ye, Jihong;Dong, Xin
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.113-144
    • /
    • 2014
  • Separation bubble and conical vortices on a large-span flat roof were observed in this study through the use of flow visualization. The results indicated that separation bubble occurred when the flow was normal to the leading edge of the flat roof. Conical vortices that occur under the cornering flow were observed near the leading edge, and their appearance was influenced by the wind angle. When the wind changed from along the diagonal to deviating from the diagonal of the roof, the conical vortex close to the approaching flow changed from circular to be more oblong shaped. Based on the measured velocities in the conical vortices by flow visualization, a proposed two-dimensional vortex model was improved and validated by simplifying the velocity profile between the vortex and the potential flow region. Through measured velocities and parameters of vortices, the intensities of conical vortices and separation bubble on a large-span flat roof under different wind directions were provided. The quasi-steady theory was corrected by including the effect of vortices. With this improved two-dimensional vortex model and the corrected quasi-steady theory, the mean and peak suction beneath the cores of the conical vortices and separation bubble can be predicted, and these were verified by measured pressures on a larger-scale model of the flat roof.

Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower (사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

Instream Flow Estimation for Gap-Stream Watershed Considering Ecosystem, Landscape, Water-friendly Environment and Water Quality (생태.경관.친수.수질을 고려한 갑천 유역의 하천유지유량 산정)

  • Kim, Tai-Cheol;Lee, Duk-Joo;Moon, Jong-Pil;Lee, Jae-Myun;Gu, Hui-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.11-20
    • /
    • 2007
  • In order to make the way to determine the instream flow more practically, we have investigated many case studies and reviewed reports and papers. To validate instream flow level suggested by the case studies, DAWAST and HEC-RAS model were applied to the Gap-stream watershed in Daejeon city. Flow-duration analysis was performed both with the stream flow data gauged in the Indong, Boksu, and Hoeduck stations, and with the stream flow data estimated by the DAWAST model and the specific discharge method. Instream flow was determined among the flow-duration analysis, DAWAST, HEC-RAS model and mass balance approach. It was satisfied with various factors such as target water quality, water depth for eco-system and resorts, water surface width, flow velocity for landscape in dry season. The study suggested that the mean low flow could be replaced into the instream flow for the preliminary study because the instream flow considering ecosystem, landscape, water-friendly environment and water quality was generally close to the mean low flow.

Off-design Performance Prediction of Centrifugal Pumps by Using TEIS model and Two-zone model (TEIS 모델과 두 영역 모델을 이용한 원심 펌프의 탈 설계 성능 예측)

  • Yoon, In-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.574-579
    • /
    • 2000
  • In this study. an off-design performance prediction program for centrifugal pumps is developed. To estimate the losses in an impeller flow passage, two-zone model and two-element in series(TEIS) model are used. At impeller exit. the mixing process occurs with an increase in entropy. In two-zone model. there are both primary zone and secondary zone for an isentropic core flow and an average of all non-isentropic streamtubes respectively. The level of the core flow diffusion in an impeller was calculated by using TEIS model. While internal losses in an impeller an automatically estimated by using the above models, some empirical correlations far estimating external losses. far example, disk friction loss, recirculation loss and leakage loss are used. In order to analyze the vaneless diffuser flow. the momentum equations for the radial and tangential directions are used and solved together with continuity and energy equations.

  • PDF

Improvement of Liquid Droplet Entrainment Model in the COBRA-TF Code

  • Ha, Kwi-Seok;Jeong, Jae-Jun;Sim, Suk-Ku
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.181-193
    • /
    • 1998
  • The COBRA-TF liquid droplet entrainment models have been assessed and improved through various experiments. The COBRA-TF code uses the Wurtz entrainment model in the film mist flow regime and the mechanistic model based on the critical Weber number and critical vapor velocity in the hot wall flow regimes, respectively. The Wurtz model has been replaced with the modified Sugawara model. The assessment against the experiments by Hewitt, Keeys, Yanai, and Whalley showed the modified Sugawara model better predicts the steam-water as well as the air-water experiments for the film mist flow regime. For hot wall flow regime, the COBRA-TF entrainment model was modified using two methods, one with an increased critical Weber number and the other with the Yonomoto's critical vapor velocity model. The modified models were assessed using the FLECHT-SEASET bottom reflood tests. The results showed that the Yonomoto model best predicts the quenching time, whereas the local maximum rod temperature was not affected much.

  • PDF

Gas sparged gel layer controlled cross flow ultrafiltration: A model for stratified flow regime and its validity

  • Khetan, Vivek;Srivastava, Ashish;De, Sirshendu
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.151-168
    • /
    • 2012
  • Gas sparging is one of the techniques used to control the concentration polarization during ultrafiltration. In this work, the effects of gas sparging in stratified flow regime were investigated during gel layer controlling cross flow ultrafiltration in a rectangular channel. Synthetic solution of pectin was used as the gel forming solute. The liquid and gas flow rates were selected such that a stratified flow regime was prevalent in the channel. A mass transfer model was developed for this system to quantify the effects of gas flow rates on mass transfer coefficient (Sherwood number). The results were compared with the case of no gas sparging. Gas sparging led to an increase of mass transfer coefficient by about 23% in this case. The limitation of the developed model was also evaluated and it was observed that beyond a gas flow rate of 20 l/h, the model was unable to explain the experimental observation, i.e., the decrease in permeate flux with flow rate.

Studies on the Flow Properties of Semi-Solid Dosage Forms (I) : Steady Shear Flow Behavior of Toothpastes (반고형제제의 유동특성에 관한 연구 (제1보) : 치약의 정상전단 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • The steady shear flow properties of six kinds of commercial toothpastes were measured using a concentric cylinder type rheometer. In this paper, the shear rate and temperature dependencies of their flow behavior were investigated and the validity of the Casson and Herschel-Bulkley models was examined. Further, the flow properties over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) Toothpastes are plastic fluids with a yield stress and their flow behavior shows shear-thinning characteristics. (2) With increasing temperature, the degree of shear-thinning becomes weaker and the Newtonian flow behavior occurs at a lower shear rate range. (3) The Herschel-Bulkley model is more effective than the Casson model in predicting their flow behavior. (4) As the temperature increases, the yield stress, plastic viscosity and consistency index become smaller, on the contrary, the flow behavior index becomes larger.

  • PDF

A Study on the Effects of Flow Adaptive Gating System and Ceramic Filter on Flow Stability (흐름 적응 탕구계와 필터가 유동 안정성에 미치는 영향 연구)

  • Hwang, Ho-Young;Yin, Song;Nam, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.37 no.3
    • /
    • pp.71-77
    • /
    • 2017
  • Casting defects produced during the casting process seriously affect the mechanical properties of the resulting products, reduce the performance capabilities of the product, and also result in economic losses. Therefore, this paper mainly investigates the causes of defects and methods by which to reduce these defects stemming from molten metal flows in a runner system of the type widely used in the sand mold casting process. The flow characteristics of a molten alloy are difficult to observe during the actual casting process. For this reason, a water model was used to observe the flow in the casting process, and the flow in each case was recorded using high-speed cameras as part of the experimental process of this study. Several repetitive experiments were performed to improve the accuracy of the experimental results. The traditional casting system was modified according to the design rules proposed by Campbell, and the system was termed flow-adaptive gating system with a water model. Comparing the flow characteristics of traditional and adaptive gating systems with a water model shows that the bubbles in the water in the latter case are reduced more significantly than in the former case. A ceramic filter system was adapted to the flow-adaptive gating system to minimize the instability of the flow during filling, which occurs as the fluid velocity in the runner increases. In additional, the flow behavior with and without the filter system were compared. The water model system in this work was shown to be able to verify that the adaptation of the filter system brings improvements by stabilizing the flow and reducing the amount of bubbles in the runner system. Moreover, using the flow-adaptive runner system with the filter system leads to considerably stable flows in the runner system.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Enhancement of Interface Flow Limit using Static Synchronous Series Compensators

  • Kim Seul-Ki;Song Hwa-Chang;Lee Byoung-Jun;Kwon Sae-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.313-319
    • /
    • 2006
  • This paper addresses improving the voltage stability limit of interface flow between two different regions in an electric power system using the Static Synchronous Series Compensator (SSSC). The paper presents a power flow analysis model of a SSSC, which is obtained from the injection model of a series voltage source inverter by adding the condition that the SSSC injection voltage is in quadrature with the current of the SSSC-installed transmission line. This model is implemented into the modified continuation power flow (MCPF) to investigate the effect of SSSCs on the interface flow. A methodology for determining the interface flow margin is simply briefed. As a case study, a 771-bus actual system is used to verify that SSSCs enhance the voltage stability limit of interface flow.