• Title/Summary/Keyword: flow meter

Search Result 595, Processing Time 0.028 seconds

A Study on the Performance of Thermal Mass Flowmeter (열량형 질량 유량계의 성능 평가)

  • Choi, Y.M.;Park, K.A.;Yoon, B.H.;Jang, S.;Choi, H.M.;Lee, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.595-600
    • /
    • 2001
  • Thermal mass flow meter(TMF) and thermal mass flow controller(MFC) were used to measure and to control the mass flow rate of gases. TMF and MFC were designed for specified working pressure and gas. For the case of different working pressure and gases, the flow rate measurement accuracy decreased dramatically. In this study, a TMF and MFC was tested with three different gases and pressure range from 0.2 MPa up to 1.0 MPa. Effect of specific heat causes to increase flow measurement error as much as ratio of specific heat compared with reference gas. Changing of pressure causes to increase flow rate measurement error about -0.2% as the working pressure decreased 0.1 MPa. Response time of MFC was below 3.12 s for the case of increasing of flow rate. But the response time was increased up to 6.92 s for the case of decreasing of flow rate. When the solenoid valve was fully closed, a initial delay time of output of MFC was increased up to 1.36 s.

  • PDF

Uncertainty Evaluation of Velocity Integration Method for 5-Chord Ultrasonic Flow Meter Using Weighting Factor Method (가중계수법을 이용한 5회선 초음파 유량계의 유속적분방법의 불확도 평가)

  • Lee, Ho-June;Lee, Kwon-Hee;Noh, Seok-Hong;Hwang, Sang-Yoon;Noh, Young-Ah
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.287-294
    • /
    • 2005
  • Flow rate measurement uncertainties of the ultrasonic flow meter are generally influenced by many different factors, such as Reynolds number, flow distortion, turbulence intensity, wall surface roughness, velocity integration method along the acoustic paths, and transducer installation method, etc. Of these influencing factors, one of the most important uncertainties comes from the velocity integration method. In the present study, a optimization weighting factor method for 5-chord, which is given by a function of the chord locations of acoustic paths, is employed to obtain the mean velocity in the flow through a pipe. The power law profile is assumed to model the axi-symmetric pipe flow and its results are compared with the present weighting factor concept. For an asymmetric pipe flow, the Salami flow model is applied to obtain the velocity profiles. These theoretical methods are also compared with the previous Gaussian, Chebyshev, and Tailor methods. The results obtained show that for the fully developed turbulent pipe flows with surface roughness effects, the present weighting factor method is much less sensitive than Chebyshev and Tailor methods, leading to a better reliability in flow rate measurement using the ultrasonic flow meters.

  • PDF

A Study for the Improvement of Performance of the Water-meter applying the Hydrodynamic Journal Bearing Theory (동압 유체 베어링 이론을 적용한 수도미터의 성능향상에 관한 연구)

  • Yoon, Joon-Yong;Sung, Nak-Won;Kim, Byung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.5-9
    • /
    • 2000
  • A study to minimize the error in water-meter is considered in this work. It is presumed that the large amount of error at large flowrate is occurred due to the vibration of the impeller shalt. After a newly designed bushing applying hydrodynamic journal bearing theory is adopted, the error at large flow rate is decreased remarkably comparing with the classical water-meter. It is concluded that the effect of a bushing in water-meter stabilizes the rotator of the impeller shaft.

  • PDF

Numerical Study on the Pulse Heating Type Infinitesimal Liquid Mass Flow Meter (단속가열식 액체용 극소질량유량 계측기에 관한 수치해석적 연구)

  • Kim, Taig Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • Numerical study on the new design of the liquid mass flow meter in infinitesimal flow rate for semiconductor production is performed. The heater and thermistor are wired on the circular tube about 0.3mm inner diameter with designed gap between them. After the time interval from the single pulse heating the thermistor reaches its peak temperature and this time interval is almost inversely proportional to the liquid mass flow rate. The axial conduction in tube wall and convection through the flow is combined. As a result, the peak temperature moving velocity is much smaller than flow mean velocity and there is no linear relationship between them. In this study, the effects of design parameters such as the tube inner/outer diameter, wired heater width, and the gap between heater and thermistor are investigated and the trends of optimization in these parameters are discussed.

Estimation of Cavity Vibration Frequency Using Adaptive Filters for Gas Flow Measurement (적응 필터를 이용한 공동진동주파수 추정에 의한 기체 유량측정)

  • 남현도
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.134-140
    • /
    • 2003
  • In this paper, a hardware implementation of gas flow meter for accuracy improvement and saving repair costs at a field is investigated. An adaptive filter using LMS algorithms for estimating cavity vibration frequencies in noisy environments is also studied. The proposed cavity gas flow meter measures cavity sound signals in gas flow tube using microphone and signal processing systems estimate the cavity vibration frequency from the measured signal. The flow velocity and flow quantity can be calculated using the estimated cavity vibration frequency. Since cavity vibration frequency is corrupted by the environmental noise, an adaptive filter using NLMS algorithms is used for cancelling the environmental noise. Experiments using 1MS32OC32 digital signal processor are performed to show the effectiveness of the proposed system.

A Study on Applicability of Ultrasonic Flowmeter to Feedwater Flow Measurements in Nuclear Power Plants (원자력발전소의 급수유량 측정에 대한 초음파유량계의 적용성 연구)

  • Yu Sung-Sik;Park Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.57-65
    • /
    • 2003
  • The measurement uncertainties of an ultrasonic flowmeter were analyzed to evaluate its applicability to the measurement of the steam generator feedwater flow-rate in a nuclear power plant. The analyses of measurement uncertainties of a reactor power were also performed with the analyses of feedwater flow measurement uncertainties. Two ultrasonic flowmeters based on a cross-correlation technique and a transit time method were used in this study. The ultrasonic flowmeters were installed on a feedwater pipe line of a typical 1000 MWe Korea-standardized nuclear power plant to take the necessary data. The results have shown that the measurement uncertainties of the ultrasonic flowmeters are adequately smaller than those or a venturi meter. The research has also indicated that the measurement uncertainties of the reactor power based on the ultrasonic flowmeter uncertainties are sufficiently bounded by the uncertainty range usually assumed in nuclear safety analyses.

The comparison between Numerical Computation and Experiment on Fluid Elow in Rectangular Duct (사각덕트내의 유체유동에 관한 수치계산과 실험의 비교)

  • Yoon Young-Hwan;Bae Taeg-Hee;Park Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.71-74
    • /
    • 2002
  • Fluid flow in a rectangular duct system are measured by W laser doppler velocity meter, and also computed by commercial software of STAR-CD for comparison between then First, for a rectangular duct with 90 degree metered elbow, the fluid flow with Reynolds numbs's of 1,508 is predicted by assumption of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300-3,000, the computation by turbulent model is close to the experimental data. Moeover, the computation by turbulent model for Reynolds number of 11,751 also predicts the experimental data satisfactorily. Second, for a rectangular duct with two branch ducts, the ratios between flow rates in the two branches are invariant to Reynolds number according to both of numerical and experimental results.

  • PDF

An Evaluation of the Accuracy of Mini-Wright Peak Flowmeters in Patients with Asthma and Chronic Obstructive Pulmonary Disease (천식 및 만성폐쇄성폐질환 환자에서 Mini-Wright Peak Flowmeter로 측정한 최대호기유속의 정확도)

  • Choi, Won-Il;Han, Seung-Beom;Jeon, Young-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.3
    • /
    • pp.310-319
    • /
    • 2001
  • Background : The peak flowmeter is very useful in monitoring of out-patients as well as those in emergency departments because of its convenience and simplicity with low cost. There have been many studies aimed at determining the accuracy and reproducibility of the peak flow meter in normal population. However, there is a paucity of reports regarding its accuracy in patients with chronic obstructive pulmonary disease(COPD) or asthma. The accuracy of the peak expiratory flow(PEF) measured with a mini-Wright peak flowmeter was assessed by a comparison with the results of a mass flow sensor. Methods : The PEF measurements were performed in 108 patients aged 19-82 years presenting with either a chronic obstructive lung disease or asthma before and after inhaling salbutamol. The PEF measurements from the mini-Wright flowmeter were compared with those obtained by the calibrated mass flow sensor. Results : The average of the readings taken by the mini-Wright meter were 37-39 l/min higher than those taken by the mass flow sensor. The average percentage error of the mini-Wright meter were higher, ranging less than 300 l/min. The mean of the differences between the values obtained using both instruments (the bias)$\pm$limits of agreement(${\pm}2$ SD) were $37.1{\pm}90\;l/min$ for the PEF(p<0.001). Conclusions : The mini-Wright peak flowmeter overestimated the flows in patients with COPD or asthma. It was also found that the accuracy of the mini-Wright peak flowmeter decreased in its mid to low range. The limits of agreement are wide and the difference between the two instruments is significant. Therefore, the measurements made between the two types of machines in patients with asthma or COPD cannot be used interchangeably.

  • PDF