• Title/Summary/Keyword: flow level

Search Result 4,367, Processing Time 0.03 seconds

A Study on the Learning GUI for the Load Flow of Power System (전력조류계산을 위한 학습용GUI에 관한 연구)

  • Lee, Hee-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.27-29
    • /
    • 2004
  • This paper presents improved teaching and learning Gill for easily analysis tool of load flow of power system. This GUI includes not only contingency analysis function, but also calculating power loss from transmission line flow. The Gill is friendly for study for power system operation and control because picture provide a better visualizing of relationships between input parameters and effect than a tabula type result. This Gill enables topology and the output data of load flow for line outages to be shown on same picture page. Users can input the system data for power flow on the the picture and can easily see the the result diagram of bus voltage, bus power, line flow. It is also observe the effects of different types of variation of tap, shunt capacitor, loads level, line outages. Proposed Gill has been studied on the Ward-Hale 6-Bus system.

  • PDF

A Computerized Design System of the Axial Fan Considering Performance and Noise Characteristics (성능 및 소음특성을 고려한 축류 팬 설계의 전산 체계)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.48-53
    • /
    • 2010
  • A computerized design system of axial fan is developed for constructing 3-D blade geometry and predicting both aerodynamic performance and noise. The aerodynamic blading design of fan is conducted by blade angle distribution, camber line determination, airfoil thickness distribution and blade element stacking along spanwise distance. The internal flow and the aerodynamic performance of designed fan are predicted by the through-flow modeling technique with flow deviation and pressure loss correlations. Based on the predicted internal flow field and performance data, fan noise is predicted by two models for discrete frequency and broadband noise sources. The present predictions of the flow distribution, the performance and the noise level of actual fans are well agreed with measurement results.

NUMERICAL ANALYSIS OF UNSTEADY FLOW FIELD AND AEROACOUSTIC NOISE OF AN AXIAL FLOW FAN (축류팬의 비정상 유동장 및 유동소음의 수치 해석)

  • Kim, Wook;Hur, Nahm-Keon;Jeon, Wan-Ho
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2010
  • Unsteady Reynolds Averaged Navier-Stokes(URANS) and Large Eddy Simulation(LES) simulation of an axial flow fan are calculated upon same conditions and computational grids in order to study aeroacoustic noise of an axial flow fan numerically. Results of computed performance and predicted noise are compared with those of measurement. Both performances show accurate results with a significant difference of less than 5%. However, noise of LES result is more close to measured noise qualitatively than URANS. Levels of tonal noises of both LES and URANS are quite similar with those of measured at BPF(Blade Passing Frequency) in sound spectrum. However, as leading edge separation and tip vortex shedding phenomena of LES are showed more clearly than those of URANS, sound level of broadband noise of LES corresponds better than that of URANS, especially.

Optical Flow Estimation Using the Hierarchical Hopfield Neural Networks (계층적 Hopfield 신경 회로망을 이용한 Optical Flow 추정)

  • 김문갑;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.48-56
    • /
    • 1995
  • This paper presents a method of implementing efficient optical flow estimation for dynamic scene analysis using the hierarchical Hopfield neural networks. Given the two consequent inages, Zhou and Chellappa suggested the Hopfield neural network for computing the optical flow. The major problem of this algorithm is that Zhou and Chellappa's network accompanies self-feedback term, which forces them to check the energy change every iteration and only to accept the case where the lower the energy level is guaranteed. This is not only undesirable but also inefficient in implementing the Hopfield network. The another problem is that this model cannot allow the exact computation of optical flow in the case that the disparities of the moving objects are large. This paper improves the Zhou and Chellapa's problems by modifying the structure of the network to satisfy the convergence condition of the Hopfield model and suggesting the hierarchical algorithm, which enables the computation of the optical flow using the hierarchical structure even in the presence of large disparities.

  • PDF

Evaluation of Flow Measurement Uncertainty of Sonic Nozzle (소닉노즐의 유량측정 불확도 평가)

  • Choe, Hae-Man;Park, Gyeong-Am;Choe, Yong-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1898-1904
    • /
    • 2001
  • Measurement uncertainty should be evaluated according to ISO/IEC 17025. In Flow measurement area, uncertainty evaluation scheme was applied to the reference flow meter, sonic nozzle. Uncertainty was calculated by evaluating various uncertainty factors affected in flow measurement. The expanded uncertainty(U) of the sonic nozzle was 2.1$\times$ 10$^{-3}$ (confidence level of 95 %). This evaluation example will be useful in flow measurement uncertainty determination of other flow meters.

Flow Velocity Changes of Carotid, Axillary, Brachial and Radial Artery after Stellate Ganglion Block (성상신경절 차단후 총경동맥, 액와동맥, 상완동맥, 요골동맥의 혈류속도변화)

  • Seo, Young-Sun
    • The Korean Journal of Pain
    • /
    • v.8 no.1
    • /
    • pp.55-59
    • /
    • 1995
  • Stellate ganglion block (SGB) is applicated frequently to increase the blood flow and to reduce the pain in head, neck and upper extremity. The effects of SGB are able to be estimated by clinical signs and symptoms of Horner's syndrome, skin warmth, anhydrosis, etc. The effects are also estimated by sympathetic function and the blood flow. Blood flow velocities and pulsatility indices of common carotid,d axillary, brachial and radial artery were measured by Doppler flowmeter after SGB with 1% lidocaine at C6 level. Blood velocities of all arteries were increased and pulsatility indices of all arteries were decreased. This results suggest that SGB increase the blood flow of head and upper extremity and Doppler flowmeter is a good indicator of the effects of SGB.

  • PDF

A Study on Unsteady Flow and Movement around a Check Valve in a Scroll Compressor (스크롤 압축기 밸브주변의 비정상유동과 밸브거동에 관한 연구)

  • Lee, Jin-Kab;Rew, Ho-Seon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.108-113
    • /
    • 1999
  • In a scroll compressor it is generally accepted that a check valve is necessary to prevent reverse rotation of the scrolls. The check valve is subjected to discharge pulsations and their resultant forces. The flow phenomena around the check valve may affect the efficiency and the noise level significantly. The motivation of this study is to understand the flow phenomena and the unstable motion of the check valve on operating conditions in order to identify reasons raising noise and improve the performance of the check valve. In this study, unsteady flow simulation was performed using CFD and the pressure distribution around the check valve was obtained. This paper also shows that unstable motion of the check valve on standard operating conditions through theoretical analysis and flow visualization.

  • PDF

High-flow nasal cannula oxygen therapy in children: a clinical review

  • Kwon, Ji-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.1
    • /
    • pp.3-7
    • /
    • 2020
  • High-flow nasal cannula (HFNC) is a relatively safe and effective noninvasive ventilation method that was recently accepted as a treatment option for acute respiratory support before endotracheal intubation or invasive ventilation. The action mechanism of HFNC includes a decrease in nasopharyngeal resistance, washout of dead space, reduction in inflow of ambient air, and an increase in airway pressure. In preterm infants, HFNC can be used to prevent reintubation and initial noninvasive respiratory support after birth. In children, flow level adjustments are crucial considering their maximal efficacy and complications. Randomized controlled studies suggest that HFNC can be used in cases of moderate to severe bronchiolitis upon initial low-flow oxygen failure. HFNC can also reduce intubation and mechanical ventilation in children with respiratory failure. Several observational studies have shown that HFNC can be beneficial in acute asthma and other respiratory distress. Multicenter randomized studies are warranted to determine the feasibility and adherence of HFNC and continuous positive airway pressure in pediatric intensive care units. The development of clinical guidelines for HFNC, including flow settings, indications, and contraindications, device management, efficacy identification, and safety issues are needed, particularly in children.

An Experimental Study on Flow in the Nozzle of a Radial Turbine (구심터빈의 노즐 내부 유동에 대한 시험 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

Physical Model Investigation of a Compact Waste Water Pumping Station

  • Kirst, Kilian;Hellmann, D.H.;Kothe, Bernd;Springer, Peer
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • To provide required flow rates of cooling or circulating water properly, approach flow conditions of vertical pump systems should be in compliance with state of the art acceptance criteria. The direct inflow should be vortex free, with low pre-rotation and symmetric velocity distribution. Physical model investigations are common practice and the best tool of prediction to evaluate, to optimize and to document flow conditions inside intake structures for vertical pumping systems. Optimization steps should be accomplished with respect to installation costs and complexity on site. The report shows evaluation of various approach flow conditions inside a compact waste water pumping station. The focus is on the occurrence of free surface vortices and the evaluation of air entrainment for various water level and flow rates. The presentation of the results includes the description of the investigated intake structure, occurring flow problems and final recommendations.