• 제목/요약/키워드: flow level

검색결과 4,356건 처리시간 0.029초

광양만 권역에서의 고농도 오존 사례에 대한 기상 및 대기질 분석 (The Analysis of Atmospheric Flow Field and Air Quality According to the High Level Ozone Case on Gwangyang Bay)

  • 최현정;이화운;임헌호;송재활
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.743-753
    • /
    • 2008
  • Gwangyang Bay is often severely confronted by photochemical pollutants due to its location and dense emissions. It is located in a basin on the south coast of the Korean peninsula and is crossed by a remarkable cluster of hills and mountains of a small horizontal scale that forms a channel. Clearly, the air flow field has a great influence on the dispersion of air pollutants. The characteristics of the wind flow patterns have an important effect on the dispersion of pollutants emitted. In these situations, the distribution of the ozone concentration is extremely complicated because of the superposition of circulations of the air flow fields, especially in complex coastal region. In this study, we examined the distribution of the high level ozone on Gwangyang Bay particularly during the episode day (for 5 years). Among these days, A high level ozone was induced by the development of a sea/land breeze local circulation system, as well as by an anabatic/catabatic flow from the mountains and valley with weakening of the synoptic wind. High level ozone distribution pattern(6 types) on Gwangyang bay is analyzed and the comparison of each pattern reveals substantial localized differences in intensity and distribution of ozone concentration from the site coherence and UPA analysis of ozone concentration. The observed VOC concentration had much difference in concentrations and daily variations between Jungdong and Samil.

지하수 포화 석회석 채굴공동에서의 골재 충전 및 임시배수시 발생하는 지하수 유동 평가 (Evaluation of Groundwater Flow by Gravel-Filling and Temporary Drainage in Groundwater-saturated Limestone Mine Cavities)

  • 최우석;강병천;김은섭;신동춘
    • 터널과지하공간
    • /
    • 제27권4호
    • /
    • pp.205-216
    • /
    • 2017
  • 지하수위 변동은 석회석 폐광산에서 발생하는 지반침하의 주된 요인이다. 본 연구에서는 지하수로 포화된 석회석 채굴공동에서 발생하는 지하수 유동을 자연상태와 골재 충전, 임시배수로 구분하여 지반 안정성에 미칠 영향을 3차원 지하수 유동 해석을 통해 평가하였다. 해석 결과 골재 충전시 지반 및 소류지의 지하수위가 상승하였지만 강우나 소류지 농업용수 사용으로 발생하는 수위차 보다 작고 유속 또한 자연상태의 유속과 유사하게 나타났다. 임시배수시에는 지반 및 소류지의 지하수위가 급격하게 하강하고 공동 내 유속이 최대 25배 이상 증가하는 것으로 나타나 지반침하 위험성이 증가하는 것으로 나타났다.

Blood Oxygen Level Sensor를 이용한 대뇌혈류증가 장치 (Cerebral blood flow enhancement device using Blood Oxygen Level Sensor)

  • 임정현;조인희;김영길
    • 한국정보통신학회논문지
    • /
    • 제22권8호
    • /
    • pp.1083-1089
    • /
    • 2018
  • 대뇌혈류를 증가 시키는 수술은 뇌경색의 치료방법중 하나이다. 이러한 침습적인 방법을 보완하기 위해 사람의 혈압을 이용해, 사지에 압박을 가하여 대뇌 혈류를 증가 시키는 비 침습적인 장치도 등장하였다. 그러나 속도와 정확성이 떨어지는 문제점이 제기되었다. 본 논문에서는, 정확한 측정과 측정하는 데에 걸리는 시간을 기존의 장치보다 개선하기 위해, Blood Oxygen Level Sensor를 이용하여, 양팔에 압력을 주면서 각 팔의 Perfusion Index를 측정하여, Perfusion Index가 일정 값 이하로 떨어지는 순간의 75% 압력을 팔에 가하고, 다리에는 팔에서 구해진 압력 값을 이용해 계산하여 얻은 압력을 가한다. 기존의 혈압 측정식 대뇌혈류증가 장치와 같이, 혈류량을 20%이상 증가 시킬 수 있고, 또한 측정 시간도 단축한 결과를 얻어 뇌경색 환자에게 선택적으로 사용할 수 있다.

뒤시엔느 근 이영양증 환자에서 기능 수준과 측정 자세에 따른 최대호기유량, 1초간노력성호기량 및 최대기침유량의 변화 (Changes in Peak Expiratory Flow, Forced Expiratory Volume in 1 Second and Peak Cough Flow Related to Functional Level and Measurement Position in Patients With Duchenne Muscular Dystrophy)

  • 김기송;신헌석
    • 한국전문물리치료학회지
    • /
    • 제16권3호
    • /
    • pp.1-8
    • /
    • 2009
  • It is important to find the effective position for cough and sputum clearance in respiratory physical therapy. The purpose of this study was to compare the changes in peak expiratory flow (PEF), forced expiratory volume in 1 second ($FEV_1$), and peak cough flow (PCF) related to functional level and measurement position in patients with Duchenne muscular dystrophy. Twenty one subjects were classified into three functional levels, and measurements was undertaken in three different measurement positions (upright sitting, $45^{\circ}$ reclining and supine). Vitalograph PEF/FEV DIARY was used to measure PEF and $FEV_1$, and Ferraris Pocket Peak was used to measure PCF. Mixed two-way analysis of variance and Bonferroni post-hoc test were used for statistical analysis. The results of the study were as follows: 1) Significant main effects for measurement position were found. 2) PEF was the highest in upright sitting, followed by $45^{\circ}$ reclining, and supine in order. 3) $FEV_1$ in upright sitting and $45^{\circ}$ reclining were significantly greater compared with that in supine. 4) PCF in upright sitting and $45^{\circ}$ reclining were significantly greater compared with that in supine. 5) No significant main effects for functional level were found in PEF, $FEV_1$, and PCF. 6) No significant functional level by measurement position interactions were found in PEF, $FEV_1$, and PCF. Therefore, it is concluded that upright sitting and $45^{\circ}$ degree reclining positions are recommended for effective cough and sputum clearance.

  • PDF

지하수위와 수온 변동에 나타난 부지 규모 지하수 흐름장의 복잡성 (Complexity of Groundwater Flow System in a Site Reflected in the Fluctuations of Groundwater Level and Temperature)

  • 박종훈;이동엽;우남칠
    • 자원환경지질
    • /
    • 제55권6호
    • /
    • pp.563-570
    • /
    • 2022
  • 이 조사는 지상에 존재하는 지하수의 잠재오염원(저장탱크)으로부터 오염물질 누출 시, 이를 조기 진단하기 위한 지하수 오염관측망의 설계 인자로서 부지 규모 지하수환경의 시공간적 변동성을 파악하고자 시행되었다. 부지 내 위치한 저장탱크 주변에 22~25 m 심도로 3개의 관측공을 설치하고, 이들로부터 약 22개월 동안 2분 간격으로 지하수위와 수온 변화를 관측하였으며, 이 자료는 주변 기상관측소의 강수 및 기온 자료와 비교 분석되었다. 조사기간 동안 지하수위의 연 변화와 강수 현상에 대한 반응, 지하수온의 변동과 기온에 대한 지연시간 등은 비교적 작은 규모의 부지에서도 지하수 흐름과 유동 경로의 복잡성을 지시한다. 따라서 오염누출 감시를 위한 지하수 관측망은 상세한 부지특성화 조사 결과에 근거하여 부지 지하수환경의 복잡성을 충분히 고려하여 설계되어야 한다.

HYDRAULIC ANALYSIS OF OXYGEN TRANSFER THROUGH AIR ENTRAINMENT IN RIPARIAN RIFFLES

  • Kim, Jin-Hong
    • Water Engineering Research
    • /
    • 제4권3호
    • /
    • pp.127-139
    • /
    • 2003
  • This paper presents the hydraulic analysis of the oxygen transfer through the air entrainment and the relationships between the efficiency of the oxygen transfer and the hydraulic parameters in the riparian riffles. Field survey on the pool-riffle formation of the river reach and the measurements of the oxygen transfer in the riffles were performed. Air entrainment occurred more frequently in the edged gravels rather than in the round and edgeless ones, and it was formed mainly from behind the trailing edges of the gravels. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number, but to be not closely related to the particle diameter. Average value of oxygen transfer in the riffles of study area was about 0.085, which shows good efficiency compared with results of smooth chute. Variation of the water level, which increases in proportion to the flow velocity and the flow discharge, seems to make the air entrainment more active, but has not been verified quantitatively. Relationships between the air entrainment and the variation of the water level must be considered in the further study.

  • PDF

공기 냉각 시스템의 홴 소음 예측 기법 (Fan Noise Prediction Method of Air Cooling System)

  • 이찬;길현권
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

자유수면 아래 정방형 실린더 후류 유동에 관한 수치해석적 연구 (NUMERICAL SIMULATION OF FLOW PAST A SQUARE CYLINDER SUBMERGED UNDER THE FREE SURFACE)

  • 안형수;양경수;박두현
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.51-57
    • /
    • 2015
  • In the present study, two-dimensional numerical investigation of flow past a square cylinder beneath the free surface has been performed to identify the effects of presence of the free surface. An immersed boundary method was adopted for implementation of the cylinder cross-section in a Cartesian grid system. Also, a level-set method was used to capture the interface of two fluids. To prevent transition to three-dimensional flow, Reynolds number chosen for this simulation was 150. The cases for Froude number 0.2 and gap ratio(h/D) between 0.25 and 5.00 were examined. At the specific Reynolds number, we study the effects of gap ratio on flow characteristics around a square cylinder by computing flow fields, force coefficients and Strouhal number.

PIV 가시화에 의한 합류덕트에서의 유동특성 (Flow Characteristics for PIV Visualization at Junction Duct)

  • 김명관;권오붕;배대석
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.45-50
    • /
    • 2005
  • Characteristics of flows at T-junction duct with and without orifices are investigated in this paper. Experiments and PIV visualization were carried out for several flow rates. Two-dimensional PIV experimental apparatus was decided by numerical analysis. PIV visualization was also coded to visualize flow fields at junctions for two-dimensional case. For the PIV visualization system, Grey-Level Cross-Correlation particle tracking algorithm was used to calculate the flow fields. Vinyl chloride polymer particles of $100{\sim}150{\mu}m$ of diameter are used in this visualization. The PIV visualization results showed relatively good agreement with Experimental data.

  • PDF

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF