• Title/Summary/Keyword: flow field design

Search Result 945, Processing Time 0.034 seconds

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Measurement of Flow Field Downstream of Polyurethane Artificial Heart Valve with Floating Valve Leaflet (열림판이 지지대에 고정되지 않은 폴리우레탄 인공판막 하류의 유동장 측정)

  • Kim, J.K.;Sung, J.;Chang, J.K.;Min, B.G.;Yoo, J.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.247-248
    • /
    • 1998
  • The effect of unattached valve leaflet on flow field downstream of a floating and flapping polyurethane heart valve prosthesis was investigated. With a triggering system and a time-delay circuit the instantaneous velocity field downstream of the valve was measured by particle image velocimetry (PIV) in conjunction with the opening posture of a flexible valve leaflet during a cardiac cycle. Reynolds shear stress distribution was calculated from the velocity fields and wall shear stress was directly measured by hot-film anemometry (HFA). The floating motion of the valve leaflet resulted in the reduction of pressure drop and recirculating flow region downstream of the valve.

  • PDF

Modeling System for Unsteady Flow Simulations in Drainage Channel Networks of Paddy Field Districts (논 지구의 배수로 부정류 흐름 모의를 위한 모델링 시스템)

  • Kang, Min Goo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • A modeling system is constructed by integrating an one-dimensional unsteady flow simulation model and a hydrologic model to simulate flood flows in drainage channel networks of paddy field districts. The modeling system's applicability is validated by simulating flood discharges from a paddy field district, which consists of nine paddy fields and one drainage channel. The simulation results are in good agreement with the observed. Particularly, in the verification stage, the relative errors of peak flows and peak depths between the observed and simulated hydrographs range 8.96 to 10.26 % and -10.26 to 2.97 %, respectively. The modeling system's capability is compared with that of a water balance equation-based model; it is revealed that the modeling system's accuracy is superior to the other model. In addition, the simulations of flood discharges from large-sized paddy fields through drainage channels show that the flood discharge patterns are affected by drainage outlet management for paddy fields and physical characteristics of the drainage channels. Finally, it is concluded that to efficiently design drainage channel networks, it is necessary to analyze the results from simulating flood discharges of the drainage channel networks according to their physical characteristics and connectivities.

The Effect of Turbulence Model on the Flow Field and the Spray Characteristics (유동장 및 분무특성에 미치는 난류모델의 영향)

  • 양희천;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

Performance of the Small PEMFC according to Cathode (Cathode에 따른 소형 PEM 연료전지의 성능 변화)

  • Lee, Se-Won;Lee, Kang-In;Park, Min-Soo;Chu, Chong-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.283-290
    • /
    • 2008
  • In this paper, experiments with an air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single-cell and 6-cell stack were used in the experiments. The experimental results showed that the open-type cathode flow field plate gave a better performance than the small channel type. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical one. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, the PEMFC generated more stable power in the mass transport loss region. Since stable power in the mass transport region is closely related to the air supply, computational fluid dynamics (CFD) analysis for air-breathing PEMFC of different cathode surface directions was performed.

The Concept Design of Joint Part Between Propellant Tank and Feeding Line for Launch Vehicle (발사체 추진제 탱크와 배관 연결부 개념설계)

  • Jung, Dong-Ho;Cho, Kie-Joo;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.801-804
    • /
    • 2011
  • The concept design of joint part between propellant tank and feeding line for launch vehicle has been performed with the case study of oversea launch vehicles. we carried out, for the several configurations, numerical flow analyses to find the joint configuration which promises high flow uniformity at the outlet. There were a little difference in the numerical results, because the length of feeding lines are sufficiently long to stabilize the flow field.

  • PDF

A Study on Evaluation of Desingn Floods Applicable to River in Kangwon Province (강원도 하천의 설계홍수량 산정에 관한 연구)

  • Choi, Han-Kyu;Choi, Suk-Byum;An, Jong-Ik;Choi, Yong-Mook
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.369-377
    • /
    • 1999
  • The determination of the design flood based on probabilistic concepts is one of the important matters of the general field of hydrology. Until now, Most of any existing formulas to predict the flood flow were estimated by very different values with each other when we applied these formulas to the small basin, in extreme case, which were estimated over top be 400% of a difference because these have been developed by foreigners or derived from the big basin. The objective of this thesis is to examine closely the characteristics of frequency flood flow for reliable prediction of the flood flow through the probabilistic method in hydrology and to develop the ($Q_T=27.74T^{0.178}A^{0.594}$) applicable to the river of Kangwon province.

  • PDF

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.149-152
    • /
    • 2007
  • The numerical simulations on the heat transfer and flow field were carried out for the improvement of the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The present geometry of the heat exchanger causes poor heat transfer since the air inside shell dose not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle.

  • PDF

Numerical analysis on the low noise designs of Savonius wind turbines by using phase difference in vortex shedding (와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.166-171
    • /
    • 2013
  • In this study, low noise designs of a Savonius wind turbines are numerically investigated. From a previous study, it was found that the high harmonic components whose fundamental frequency is higher than the BPF were found to be dominant in noise spectrum of a Savonius wind turbine. On a basis of this observation, S-shaped blade tip is proposed as a low design factors that decrease wind turbine noise by inducing phase differences in vortex shedding. The conventional Savonius and S-shaped turbines are investigated using Hybrid CAA method where flow field around the turbine are computed using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Noise reductions by these design factors are confirmed by comparing the predicted noise levels from these turbines.

  • PDF

Predicting Noise inside a Trimmed Cavity Due to Exterior Flow (외부 유동에 의한 흡차음재 공간내의 소음 예측)

  • Jeong, ChanHee;Ganty, Bastien;Choi, EuiSung;Cho, MunHwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.466-471
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using PowerFlow. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran. Additionally in order to validate the numerical process, an experimental set-up has been created based on the simplified vehicle. The vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF