• Title/Summary/Keyword: flow discharge and water quality data

Search Result 95, Processing Time 0.029 seconds

Characteristics of Quality and Flow of Water Resources at Palaces in Seoul Metropolitan (서울 시내 궁궐 수원의 수질과 유동 특성)

  • Naranchimeg., B;Lee, Jae-Min;Woo, Nam-C.;Kim, Youn-Tae;Lee, Kang-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.61-76
    • /
    • 2011
  • This study was objected to provide suggestions for best management practices to restore the cultural and historical values of the wells in Palaces as well as their water qualities. Water resources in the five Palaces in Seoul Metropolitan, including Gyeongbokgung, Changdeokgung, Changgyeonggung, Jongmyo Shrine, and Deoksugung, were surveyed for their physical flows and chemical compositions from April to July in 2010. Ground waters in most wells were found at depths within 5 m from the ground surface, showing typical water-table aquifer systems. Hydraulic gradients indicate water resources in Gyeongbokgung, Changdeokgung, and Changgyeonggung flowing toward south, and toward east in Deoksugung area. Especially, water-level fluctuation data at S-10 in Deoksugung implied the influence of groundwater discharge facility. In Jongmyo Shrine, water was not detected in wells, indicating the water level was lower than the well depth. Based on the water chemistry and stable isotope analyses, water resources and their qualities appeared to be formed by the water-rock interaction along the groundwater paths. S-10 (Deoksugung) and S-14 (Changgyeonggung) samples were contaminated with nitrate ($NO_3$) in levels of higher than Korean drinking water standard, 10 mg/L as $NO_3$-N, but once in four sampling campaigns. In the situation that water resources in Palaces still maintain natural characteristics, the materials that will be used for the restoration and improvement of the Palace water supplies should be carefully selected not to disturb the natural integrity. In addition, because the wells are located in the center of metropolitan area, a systematic monitoring should be applied to detect and to manage the potential impacts of underground construction and various pollution sources.

Hydrologic and Water Quality Responses to Precipitation Extremes in Nakdong River Basin (이상기후변화가 낙동강 유역의 수문·수질요소에 미치는 영향)

  • Jang, Jae Ho;Ahn, Jong Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1081-1091
    • /
    • 2012
  • SWAT model is applied to simulate rainfall-runoff and pollutant loadings in the Nakdong River basin as the condition for extreme droughts and floods. The year 1994 and 2002 are chosen as the drought and flood year, respectively, through the analysis of past rainfall data for 30 years. The simulation results show decreases in both runoff and pollutant loadings for the drought year but increases for the flood year. However, the pollutant loadings on some upper sub-basins increase for drought year due to highly-regulated dam discharge and soil moisture change. Collectively, extreme droughts and floods have negative impacts on water quality, showing elevated SS loadings during wet season and concentrated T-P concentrations during low flow season. The extent of these impacts is highly influenced by antecedent dry days and precipitation patterns.

Development and Application of the Ecosystem Model in Brackish Lake Obuchi, Japan (일본 기수호(Lake Obuchi)에서 생태계 모델의 개발과 적용)

  • Kondo, Kunio;Inaba, Jiro;Hosoda, Masahiro;Kutsukake, Hiroshi;Seike, Yasushi;Nakata, Kisaburo;Shinji, Ueda
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.448-454
    • /
    • 2004
  • In order to evaluate the water quality (N, P and C) and the biological mass balance of semi-enclosed brackish Lake Obuchi, Japan, an ecosystem model was developed and applied to the lake, using the flow field calculated by a hydrodynamic model. The time series data of the observed tide level, river discharge and meteorological parameters from January 2001 to December 2002 were incorporated as the parameters of the hydrodynamic model. Water quality and biomass balance were estimated by the ecosystem model, and simulated fluctuations In water quality agreed with our observations. The carbon contents of POC, phytoplankton and zooplankton in the lake were calculated by the model at an average 7200, 1500 and 22 kg, respectively, which somewhat agreed with our observations of POC (5900 kg), phytoplankton (3800kg), and zooplankton (150kg).

Parameter Estimation of Tank Model by Data Interval and Rainfall Factors for Dry Season (건기 실측간격, 강우인자에 따른 탱크모형 매개변수 추정)

  • Park, Chae Il;Baek, Chun Woo;Jun, Hwan Don;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.856-864
    • /
    • 2006
  • For estimating the minimum discharge to maintain a river, low flow analysis is required and long term runoff records are needed for the analysis. However, runoff data should be estimated to run a hydrologic model for ungaged river basin. For the reason, parameter estimation is crucial to simulate rainfall-runoff events for those basins using Tank model. In this study, only runoff data recorded for dry season are used for parameter estimation, which is different to other methods based on runoff data recorded for wet and dry seasons. The Harmony Search algorithm is used to determine the optimum parameters for Tank model. The coefficient of determination ($R^2$) is served as the objective function in the Harmony Search. In cases that recorded data are insufficient, the recording interval is changed and Empirical CDF is adopted to analyze the estimated parameters. The suggested method is applied to Yongdam dam, Soyanggang dam, Chungju dam and Seomjingang dam basins. As results, the higher $R^2s$ are obtained when the shorter recording interval, the better recorded data quality, and the more rainfall events recorded along with certain rainfall amount is. Moreover, when the total rainfall is higher than the certain amount, $R^2$ is high. Considering the facts found from this study for the low flow analysis, it is possible to estimate the parameters for Tank model properly with the desired confidence level.

Characteristics of Storm Runoff and Analysis of Its Correlation with Forest Properties (산림특성에 따른 강우유출수 유출특성 및 상관관계 분석)

  • Chung, WooJin;Chang, SoonWoong
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1007-1016
    • /
    • 2016
  • Environmental policy implementation has been strengthened to protect the source waters in Korea and to improve their water quality. Increasing of non-point source caused water quality problem continuously. Research on runoff from forests, which occupy over 65% of the land in korea, is insufficient, and studies on the characteristics and influences of storm runoff are necessary. In this study, we chose to compare the effects of land use in the form of two types of forest distribution and then gathered data on storm characteristics and runoff properties during rainfall events in these areas. Furthermore, the significance and influences of the discharges were analyzed through correlation analysis, and multilateral runoff characteristics were examined by deducing a formula through $COD_{Mn}$ and TOC regression analysis. At two forest points, for which the basin areas differed from each other, flow changed according to storm quantity and intensity. The peak discharge at point A, where the basin area was big, was high, whereas water-quality fundamental items (BOD, $COD_{Mn}$, and SS) and TOC density were high at point B where the slope and storm intensity were high. Effects of dissolved organic matter were determined through correlation analysis, and the regression formulas for $COD_{Mn}$ and TOC were deduced by regression analysis. It is expected that the data from this study could be useful as basic information in establishing forest management measures.

The Analysis of Potential Discharge to Supply the Stream Water Discharge in Paldang Dam by Dam Operation (댐 운용을 통한 팔당댐의 하천용수 공급가능량 분석)

  • Choi, Gye-Woon;Kim, Young-Kyu;Ham, Myeong-Soo;Hwang, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.121-128
    • /
    • 2008
  • Instream flows are defined as the stream flows needed to protect and preserve instream resources and values. They are supplied by the essential discharge for maintaining the channel. However, due to the lack of precipitation during the dry season, which is usually between the months of January and April, natural flows are not enough for the instream flows, thus leaving the dams at a shortage. In this paper, the method which will be discussed will show a physical way to improve water quality by the dilution of water that is supplied from a reservoir or dam, and how it is analyzed at the Han River basin. For the sake of this analysis, the basin has been divided into 33 catchments. Each catchment's natural flow has been simulated by SWAT-K, and the future water demand has been estimated using statistical data. It has also been assumed that the Han River basin has two large reservoirs(Chung-ju dam, and So-yang dam). The supply of potential discharge has been calculated using a case of water separately from each dam, as well as supply water from both dams.

A Study on the Assessment of Pollution Loads at Small Stream in Yeongsan River Watershed (영산강수계 소하천의 오염부하량 평가에 관한 연구)

  • Ha, Don-Woo;Shim, Hongbin;Kim, Haesung;Kim, Yoonsoo;Cho, Sohyun;Song, Chang-Soo;Kang, Taegu;Kim, Yeong-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, the load of the river was calculated by using the actual data of the Yeong-bon C1, Yeong-bon C2, Yeong-bon C3 monitoring points of the Yeong-san river watershed to determine the excess. As a result, the BOD is 75.83 % at the Yeong-bon C1 and the five-year average value is higher than at other points. The Yeong-bon C3 was 72.15 % and Yeong-bon C2 was analyzed as 68.78 %. The five-year average of the T-P was 71.95 % for the Yeong-bon C2 and 69.86 % for the Yeong-bon C3 and 69.16 % for Yeong-bon C1; these levels exceeded the target water quality standards of 50 %. As a result of analyzing the pollutant load, we found that the Yeong-bon C1 has been highly affected by the nonpoint pollution source because the excess rate is high in the upper section of the flow rate. The Yeong-bon C2 showed a high excess rate in the lower part of the flow rate, and it was estimated that the influence of the point pollution source was large. The excess rate of the Yeong-bon C3 is small in the interval deviation, and it was evaluated as being affected by both point and non-point pollution sources. The TMDL monitoring network data were used to estimate the exceed ratio for the target water quality assessment, and the implementation evaluation was made by the flow exceedance probability interval to analyze the monitoring data so that the data could be utilized according to the purpose of the measurement network.

Eco-river Restoration and River Management in Response to Climate Change (기후변화를 고려한 생태하천 복원 및 관리방향에 관한 연구)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.155-165
    • /
    • 2014
  • In this study, using a complex of physical, chemical, and biological evaluation factors, the ecological vulnerability to climate change were evaluated at each river in the Nakdong river basin. First, runoff, sediment rate, and low flow discharge changes according to AIB climate change scenario using the SWAT model were simulated. Also, for the assessment of chemical and biological factors, 48 points that water quality monitoring sites and ecological health measurement points are matched with each other was selected. The water quality data of BOD and T-P and the biological data of IBI and KSI in each point were reflected in the assessment. Also, the future rise in water temperature of the rivers in Nakdong river basin was predicted, and the impact of water temperature rise on the fish habitat was evaluated. The top 10 most vulnerable points was presented through a summary of each evaluation factor. This study has a contribution to river restoration or management plan according to the characteristics of each river.

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF