• Title/Summary/Keyword: flow cell

Search Result 3,119, Processing Time 0.03 seconds

Effect of the Pulsatile Flow on the Morphological Changes of the Endothelial Cells in Blood Vessel (맥동유동이 혈관내 내피세포의 형태변화에 미치는 영향)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Cho, Min-Tae;Park, Chan-Young;Chang, Jun-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.531-534
    • /
    • 2000
  • The objective of this investigation is to find effects of the pulsatile flow on the morphological changes of the endothelial cell(E.C.) in blood vessel. The shear flow experiment system is used to get the morphological changes of the E.C. The shapes of E.C. are simulated by the cosine curves and computer simulation is used to calculate the pressure and shear stress fields on the E.C. The inlet boundary condition is given from the measured velocity data of femoral artery. The endothelial cells reduce their heights in the flow field so as to reduce the pressure and wall shear stress on the surface. As the exposed time increases, the shear stress and pressure on the E.C. are reduced under the pulsatile flow. The shear stresses on the cell surface show the minimum values during the deceleration phase.

  • PDF

Continuos-Flow culture of Hepatocytes in Sugar-derivatized poly (lactide-co-glycolide) Scaffolds Prepared by Gas-foaming/salt-leaching Method

  • Yun, Jun-Jin;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.141-144
    • /
    • 2000
  • Highly open porous polymer matrices are required for high density cell seeding, efficient nutrient, and oxygen supply to the cells cultured in the three dimensional matrices. However, there are severe problems of mass transfer limitations within the cell/scaffolds culture system. Thus we hypothesize that continuos-flow culture conditioning of cells with the scaffolds may improve the cell viability and the differentiated function. In this study, we fabricated porous PLGA scaffolds by using gas-foaming/salt-leaching method as previous described. Viscous PLGA gel paste contains ammonium bicarbonate particulates, acting as a gas-foaming agent as well as a salt-leaching porogen, were cast into Teflon mold and dried. Ammonium bicarbonate salt upon contact to an acidic aqueous solution evloves gaseous ammonia and carbon dioxide by itself. And we conjugated galactose moiety [AGA; $N-(aminobuty1)-O-{\beta}-D-galactopyranosyl-(1{\rightarrow}4)-D-glucoamide]$ to the terminal end group of a PLGA to increase the cell adhesion and matain the differentiated function of hepatocytes. Cell-seeded scaffolds were secured in a flow bioreactor chamber and exposed to continuous flow at 5 ml/min. As a result of our study, the high yield of hepatocytes attachment was accomplished by increasing the concentration of PLGA-AGA conjugate in polymer scaffolds and cells in the scaffolds under continuos flow condition maintained a high level of viability and albumin secretion rate of cultured hepatocytes showed a higher level that of control groups.

  • PDF

Effect of Light-Emitting Diode Wavelength, Light Intensity and Air Flow Ration on Optimal Growth of Pavlova lutheri and Phaeodactylum tricornutum (LED의 파장 및 광도, 공기주입이 Pavlova lutheri와 Phaeodactylum tricornutum의 최적 성장에 미치는 영향)

  • Choi, Bo-Ram;Kim, Dong-Soo;Lee, Tae-Yoon
    • KSBB Journal
    • /
    • v.28 no.3
    • /
    • pp.170-176
    • /
    • 2013
  • The purpose of this study was to determine optimum condition of Pavlova lutheri and Phaeodactylum tricornutum. Detailed studies were carried out on the effects of various wavelengths of light-emitting diodes (LEDs), light intensities and air flow rations. For the Pa. lutheri, cell growth rates and maximum cell concentrations were similar regardless of wavelengths and air flow rates. Among the different light intensities, cell concentration increased when light intensity of red LED increased. For Ph. tricornutum, red LED was found to be the most effective light source, and light intensity of 3,100 Lux resulted in the most effective for the cultivation of Ph. tricornutum. Different air flow rates were tested to overcome shading effects due to denser cell concentration in the solution. Aeration of 0.8 vvm was determined to be the optimum aeration rate for the cultivation of Ph. tricornutum. Especially, five and two times greater cell concentrations of Pa. lutheri and Ph. tricornutum, respectively, were observed when air was applied.

Performance of the PEMFC for the mobile devices according to cathode (Cathode에 따른 휴대용 PEM 연료전지의 성능 변화)

  • Lee, Se-Won;Lee, Kang-In;Park, Min-Soo;Chu, Chong-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.550-553
    • /
    • 2008
  • In this paper, experiments of air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to the cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single cell and 6-cell stack were used in this experiments. The experimental results showed that the open type cathode flow field plate gave better performance for small size PEMFCs because the open type cathode plate allowed better air convection than the channel type cathode plate. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical slit cell. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, PEMFC generated more stable power in the mass transport loss region.

  • PDF

An Efficient Cell Formation Approach for a Cellular Manufacturing System Considering Operation Sequences (작업순서를 고려한 효율적인 제조셀 형성방법)

  • Choi, Dong-Soon;Chung, Byung-Hee
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.189-196
    • /
    • 1997
  • This paper presents a cell formation approach for a cellular manufacturing system to minimize the inter-cell moves considering operation sequences. Two new factors are introduced: (1)flow-similarity(FS) for integrating direct/indirect inter-machine flow and similarity (2)machine cell-part moves (CPM) for exactly computing inter-cell moves. FS is used for combining machines and CPM is used for assigning the parts to the preliminary machine cells. In addition, we develop an aggregated heuristic algorithm to form manufacturing machine cells and assign the parts to those cells based on these concepts. We use performance criterion called total inter-cell moves(TICM), which is the total material flow between internal cells and external cells. Results of computational tests on a number of randomly generated test problems show that the suggested heuristic is superior to existing methods.

  • PDF

The Use of a Decanter for Harvesting Biomass rom plant Cell Cultures (데칸터를 이용한 텍서스속 식물세포 회수)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.337-341
    • /
    • 2000
  • The decanter is very useful to harvest biomass from plant cell cultures in large-scale process. It is very important to obtain high yield and low moisture content in recovered biomass so as to minimize solvent usage in subsequent extraction steps. Effluent clarity was also affected by the differential speed although this affect was more dramatic at higher flow rates than at lower flow rates. Moisure content was largely unaffected by flow rate. A decrease in moisture content was evident as differential speed decreased.

  • PDF

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction (전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측)

  • Cho H. M.;Lee K. W.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

Humidity Effect on the Hydrogen Re-circulation Ejector Performance (고습의 흡입 유체일 때 이젝터의 성능 변화)

  • JeGal, Seung;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2589-2593
    • /
    • 2008
  • In a fuel cell vehicle using polymer electrolyte membrane fuel cell(PEMFC), hydrogen is over-supplied to gain higher stack efficiency. So it is needed considering fuel efficiency to re-circulate hydrogen which is not reacted in stack. And to re-circulate hydrogen, a blower or an ejector is used. Ejector re-circulation system has several merits compared with blower system, for example no parasite energy, simple structure and no lubrication system. But the secondary flow of an ejector in fuel cell vehicle, has high humidity because of crossover problem in stack. Therefore in this paper, ejector is designed by 1-D modeling and CFD with the primary and secondary flow of hydrogen. And the ejector which has the primary and secondary flow of air, is designed to have the same Reynolds number and Mach number at the nozzle exit as the hydrogen ejector's. And this air ejector is tested while the humidity of the secondary flow is varied.

  • PDF

Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell (PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구)

  • Kim, Bok-Yung;Kim, Han-Sang;Min, Young-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF