• 제목/요약/키워드: flow angle

검색결과 2,897건 처리시간 0.03초

축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형 (Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines)

  • 윤의수;박부룡;정명균
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (I) : HYDRODYNAMIC STUDY

  • Noh, Joon-Woo
    • Water Engineering Research
    • /
    • 제4권2호
    • /
    • pp.87-97
    • /
    • 2003
  • In this study, using the numerical model, the flow motion around skewed abutment is investigated to evaluate the skewness effect on the flow distribution. The skewness angle of the abutment which make with main flow direction is changed from $30\circ$ to $150\circ$ with increments of $10\circ$ while the contraction ratios due to the abutment are kept constant. For the investigation of the combined effects on the relationship between the skewness angle and flow intensities, this process will be .repeated fer different types of abutment (single and double) with different flow intensities. The maximum velocities and the velocity distributions, which can be obtained from each angle, are examined and analyzed corresponding to different angles of inclination. Based on successive model applications, an empirical expression, given in a function of contracted ratio and skewness angle, is derived for relating velocity amplifications according to the angle variations.

  • PDF

원심펌프 임펠러 입구각도 변화에 따른 유동해석 (FLOW ANALYSIS OF THE IMPELLER WITH DIFFERENT INLET ANGLES IN THE CENTRIFUGAL PUMP)

  • 이성현;이동렬
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.58-63
    • /
    • 2016
  • This research is to investigate the performance analysis for efficient design with four different inlet angles of the centrifugal pump impeller. Assuming that the rotation speed and exit angle are fixed, Four cases of the centrifugal pumps were numerically analyzed using ANSYS FLUENT. According to the numerical results, head and pump efficiency at inlet angle of 20 degrees was highest. There is no big difference of efficiency at inlet angle of 20 degrees compared to the inlet angle 30 degrees. About 15% of efficiency at inlet angle of 20 degrees is higher than inlet angle of 40 degrees and 31% higher than inlet angle oof 50 degrees. Because there is liner functional relationship between speed and flow rate, suction flow rate at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.89%, inlet angle of 40 degrees as 13%, inlet angle of 50 as 28.4%. Head at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.4%, inlet angle of 40 degrees as 2.7%, inlet angle of 50 degrees as 3.2%. There should exist highest efficiency and also optimal design shape at inlet angle of 20 degrees.

블레이드 후향각이 원심압축기의 성능과 유동에 미치는 영향 (Effects of Blade Back Sweep Angle on the Performance and Flow Field in a Centrifugal Compressor)

  • 정요한;백제현;박준영;최민석
    • 한국유체기계학회 논문집
    • /
    • 제16권2호
    • /
    • pp.48-53
    • /
    • 2013
  • This paper presents a numerical investigation of the influence of the blade back sweep angle on the performance and flow characteristics in a centrifugal compressor with a vaneless diffuser. Five impellers with different back sweep angles were tested in the flow simulations. It was found that a low back sweep angle could improve the total-to-total pressure ratio and the work coefficient over whole operating ranges. However, the flow field in an impeller with a low back sweep angle produced a more non-uniform velocity distribution at the impeller exit because the wake region was significantly increased. As a consequence, the impeller with a low back sweep angle caused a low diffuser performance.

NACA 0021 익형 유동장의 수치해석적 연구 (A Numerical Study on the Flowfield around a NACA 0021 Airfoil at Angles of Attack)

  • 김상덕
    • 한국항공운항학회지
    • /
    • 제24권4호
    • /
    • pp.20-25
    • /
    • 2016
  • A primary benefit of flight at high angle-of-attack conditions is to be able to reduce the speed of flight and maneuvers, which can enhance the capability of sensing and obstacle avoidance for a small UAV. The flight at high angle-of-attack conditions, however, is easy to be beyond stall which is characterized by substantial flow separation over an airfoil. Current numerical analysis was conducted on the capabilities of three representative turbulence models to predict the aerodynamic characteristics of a typical airfoil at angle-of-attack conditions. The investigation shows that these turbulence models provide good comparison with experimental data for attached flow at moderate angle-of-attack conditions. Calculation by current turbulence models are, however, not appropriate at high angle-of-attack conditions with flow separation.

횡류홴 설계 인자들의 성능/소음 특성 해석 및 최적화 (Analysis on Performance and Noise Characteristics of the Design Parameters of a Cross-Flow Fan and its Optimization)

  • 조용;문영준;곽지호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.767-770
    • /
    • 2002
  • The performance and noise characteristics of the design parameters of a cross-flow fan are investigated by computational methods. The incompressible Wavier-Stokes equations in moving coordinates are time-accurately solved for obtaining the pressure fluctuations due to the aerodynamic interactions between the impeller blades and the stabilizer, and sound pressure is then computed by the Ffowcs Williams-Hawkings equation. Design parameters of the cross-flow fan include blade setting angle, exit-diffusion angle, and stabilizer installation angle. Also, an optimization of the aforementioned design parameters has been peformed using the Taguchi method.

  • PDF

받음각이 있는 3차원 초음속 흡입구 주위의 유동진동 해석 (Numerical Analysis of Flow Characteristics around 3D Supersonic Inlet at Various Angle of Attack)

  • 김정민;홍우람;김종임
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.218-224
    • /
    • 2011
  • A supersonic inlet at angle of attack has anti-symmetric pressure distribution, and it can make flow instability and structural problem. In this study, numerical analysis of three-dimensional inviscid flow was conducted under various throttle ratio and angle of attack conditions. Throttle ratio was defined as the ratio of the exit area to the smallest cross section area at inlet, and the ratio is controlled from 0 to 2.42. At various angle of attack, the characteristics of steady and unsteady flow around supersonic inlet is observed under different throttling ratios. From these results, pressure recovery curves and pressure history curves were plotted by post processing. Using pressure history data, FFT analysis is also carried out. Through these processes, it shows the tendency of pressure distribution anti-symmetricity and changing dominant frequency as increasing angle of attack.

  • PDF

A Study on the Aerodynamic Characteristics of a Joined-wing Aircraft with Variation of Wing Configurations

  • Kidong Kim;Jisung Jang
    • International Journal of Aerospace System Engineering
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2023
  • The present study was attempted to investigate flow interference effects and the aerodynamic characteristics of the front and rear wings of a joined-wing aircraft by changing the configuration variables. The study was performed using a computational fluid dynamics(CFD) tool to demonstrate forward flight and analyze aerodynamic characteristics. A total of 9 configurations were analyzed with variations on the position, height, dihedral angle, incidence angle, twist angle, sweepback angle, and wing area ratio of the front and rear wings while the fuselage was fixed. The quantities of aerodynamic coefficients were confirmed in accordance with joined-wing configurations. The closer the front and rear wings were located, the greater the flow interference effects tended. Interestingly, the rear wing did not any configuration change, the lift coefficient of the rear wing was decreased when adjusted to increase the incidence angle of the front wing. The phenomenon was appeared due to an effective angle of attack alteration of the rear wing resulting from the flow interference by the front wing configurations.

위상대조도 MRI에서 숙임각에 따른 상행대동맥의 혈류 측정 (Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta)

  • 김문선;권대철
    • 한국자기학회지
    • /
    • 제26권4호
    • /
    • pp.142-148
    • /
    • 2016
  • 자기공명영상에서 위상대조(phase contrast; PC) 기법으로 혈류 속도와 혈류량을 정량적으로 측정하기 위해 VENC(150 cm/s)에서 숙임각의 변화에 따른 혈류 속도와 혈류량을 측정하였다. 1.5T MRI로 지원자 17명(여: 8, 남: 9, 평균연령 $57.9{\pm}15.4$)을 대상으로 non-breath holding 기법을 적용하여 상행대동맥에서 VENC(150 cm/s)로 숙임각을 $20^{\circ}$, $30^{\circ}$, $40^{\circ}$ 변화하여 측정하였다. 혈류는 average velocity, peak velocity, net forward volume, net forward volume/body surface area를 획득하였다. 상행대동맥에서 AV(average velocity)의 평균값은 숙임각 $20^{\circ}$(9.87 cm/s), $30^{\circ}$(9.6 cm/s), $40^{\circ}$(10.05 cm/s)로 측정되었다. 숙임각을 $20^{\circ}$, $30^{\circ}$, $40^{\circ}$에서 peak velocity, average velocity, net forward volume, net forward volume/body surface area는 통계적인 유의한 차이가 없었다(p > .05). 혈류속도와 혈류량 측정은 매개변수를 조정하여 적용하면 심장혈관 질환의 진단 및 치료에 중요한 정보가 되는 혈류량을 정확히 계산하고, 혈류량 측정에 관한 연구에 도움을 줄 수 있다.

흡입 밸브 각도에 따른 실린더 내 흡입 유동 특성 비교 (In-Cylinder Intake Flow Characteristics according to Inlet Valve Angle)

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.142-149
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real intake flow. The results show that the intake flow pattern of conventional engine is more complicated than that of narrow angle one in horizontal plane and the vertical component of in-cylinder flow is rapidly decayed at the end stage of intake. On the other hand, the flow pattern of narrow angle one is relatively well arranged in horizontal plane and the vertical velocity component remains so strongly that forms large-scale strong tumble. Two engines also form commonly three tumble; two are small and bellow the intake valve and one is large-scale. The center of large scale tumble moves to bottom of cylinder as the vertical velocity increases.