• 제목/요약/키워드: flow angle

검색결과 2,902건 처리시간 0.027초

평균반경해석법을 이용한 축류압축기 성능해석 프로그램 개발 (Development of Performance Analysis Program for an Axial Compressor with Meanline Analysis)

  • 박준영;박무룡;최범석;송재욱
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.141-148
    • /
    • 2009
  • Axial-flow compressor is one of the most important parts of gas turbine units with axial turbine and combustor. Therefore, precise prediction of performance is very important for development of new compressor or modification of existing one. Meanline analysis is a simple, fast and powerful method for performance prediction of axial-flow compressors with different geometries. So, Meanline analysis is frequently used in preliminary design stage and performance analysis for given geometry data. Much correlations for meanline analysis have been developed theoretically and experimentally for estimating various types of losses and flow deviation angle for long time. In present study, meanline analysis program was developed to estimate compressor losses, incidence angles, deviation angles, stall and surge conditions with many correlations. Performance prediction of one stage axial compressors is conducted with this meanline analysis program. The comparison between experimental and numerical results show a good agreement. This meanline analysis program can be used for various types of single stage axial-flow compressors with different geometries, as well as multistage axial-flow compressors.

회전타원체 보빈 형상의 거동에 관한 연구 (A Study on the Behavior of Spheroid Configuration Bobbin)

  • 강승희;안성호;임완권;김혜웅
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.717-724
    • /
    • 2010
  • The initial trajectory of a spheroid configuration bobbin for precision guidance has been investigated by analyzing its aerodynamic load and six-degree-of-freedom motion. The effects of changes in the spheroidal head configuration, flow angle and lateral center-of-gravity offset are numerically studied using the commercial software "FLUENT". A wind tunnel test is also conducted to validate the numerical scheme and to examine effect of the Reynolds number on the flow around the bobbin. It is shown that the size of the separation bubble formed on the surface decreases significantly when the Reynolds number is varied between 110,000 and 140,000. At a zero flow angle, an oblate spheroidal head shows relatively moderate rotation while a prolate spheroidal head shows rapid rotation. The bobbin with a spherical head shape has little effect on the flow direction; however, the oblate bobbin is sensitive to the flow angle. The roll motion of the bobbin is greatly influenced by the lateral center-of-gravity offset and maximum dispersion is observed at half of the radius.

받음각을 갖는 평판보의 유동 여기진동에 관한 연구 (A Study on Flow Induced Vibration of Cantilever Plate with Angle of Attack)

  • 이기백;손창민;김봉환
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1919-1932
    • /
    • 1991
  • 본 연구에서는 고강도 알루미늄 합금으로 제작된 평판보의 받음각(.alpha.)를 10˚ 에서 30˚까지 10˚씩 변화시킨 3가지의 모델에 대해, 각 모델의 Re$_{d}$수 변화에 대한 후류의 스펙트럼분석, 레이저 도플러 유속계(laser doppler velocimetry)를 이용 한 유동장 해석 및 평판보의 응답을 실험을 통해 조사, 분석하고 유동장과 측정이 용 이하지 않은 얇은 평판주위의 압력분포에 대한 전산해석을 수행함으로써 유동 여기진 동 구조의 규명을 시도하였다.다.

굽은 형상을 가지는 라이저 주위 유동 특성에 관한 연구 (Numerical Study on Flow Characteristics Around Curved Riser)

  • 정재환;오승훈;남보우;박병원;권용주;정동호
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.123-130
    • /
    • 2019
  • The flow around a curved riser exposed to the current in various directions was investigated at a Reynolds number of 100 using a numerical simulation. The present study found that the flow features of the curved riser were distinct from those of a straight riser as a result of its large radius of curvature. Namely, there were various wake patterns according to the flow's incident angle. As the incident angle increased from $0^{\circ}$ to $90^{\circ}$, a two-row street of vortices that developed along the centerline of the curved riser became more apparent. However, when the incident angle approached $180^{\circ}$ from $90^{\circ}$, these vortices were completely suppressed by the interaction between the wake and an axial flow induced by the curvature of the riser. To identify this feature, the sectional force coefficients were also considered, and it was found that the force coefficients could be different from those found in a sectional analysis based on the strip theory when investigating vortex-induced vibration. As a result, this kind of study would be important to realistically estimate the riser VIV (vortex-induced vibration) and fatigue life, and a new force coefficient database that includes the three-dimensional effect should be established.

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권3호
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구 (A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct)

  • 손현철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포 (Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

2차원 수치모형에 의한 합류흐름 해석 (Junction Flow Analyses by Twp-Dimensional Numerical Model)

  • 윤태훈;정의택;박종석
    • 한국수자원학회논문집
    • /
    • 제31권5호
    • /
    • pp.529-538
    • /
    • 1998
  • 개수로 합류부의 흐름양상이 2차원 수심적분 수학적 모형에 의하여 해석된다. 합류부 흐름에 지배적인 매개변수는 지류와 합류후 유량의 비와 합류각으로 나타났다. 이들 인자의 항으로 해석되는 대상은 합류부에서 흐름양상과 수심의 변화, 본류에서 합류부 상류흐름이 영향을 받기 시작하는 유량비 및 순환영역의 기하특성이다. 또한 합류하류에서 흐름수축과 지류의 굽음각이 조사되었다. 수치해석결과는 기존 실험자료와 비교적 잘 맞는것으로 나타났다.

  • PDF