• Title/Summary/Keyword: flow angle

Search Result 2,907, Processing Time 0.041 seconds

Selectivity and Permeability Characteristics of Pure CO2 and N2 Gases through Plasma Treated Polystyrene Membrane (플라즈마 처리된 폴리스티렌 막을 통한 순수한 CO2 와 N2 기체의 선택·투과 특성)

  • Hwang, Yui-Dong;Shin, Hee-Yong;Kwak, Hyun;Bae, Seong-Youl
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.588-596
    • /
    • 2006
  • The surface of polystyrene membrane treated by Ar, $O_2$ plasma, and the effects were observed before and after the treatment and permeability of $CO_2$, $N_2$ and selectivity of $CO_2$ relative to $N_2$ was measured using continuous flow gas permeation analyzer (GPA). The mole ratio of O over C in the surface was increased from 0 to 0.179 with Ar plasma treatment and route mean square of surface was increased from $15.86{\AA}$ to $71.64{\AA}$. Therefore the contact angle was decreased from $89.16^{\circ}$ to $18.1^{\circ}$. Thus Plasma treatments made surface of membrane tend to be highly hydrophilic. The optimum condition for the $CO_2$ permeability and ideal selectivity of the plasma treated membrane was as follows: the measurement of Ar (60 W, 2 min, $70^{\circ}C$) plasma treatment was $1.14{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$ and 4.22. In the case of $O_2$ plasma treatment, the contact angle was decreased at $13.56^{\circ}$ with increase of O/C ratio ($0.189{\AA}$) and route mean square of surface ($57.10{\AA}$). The optimum condition for the $CO_2$ permeability and ideal selectivity of the plasma treated membrane was as follows: the measurement of $O_2$ (90 W, 2 min, $70^{\circ}C$) plasma treatment was $7.1{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$ and 11.5. After plasma treatment, the changes of membrane surface were all subtly linked with both cross-linking and etching effects. Finally, it was confirmed that the gas permeation capacity and selectivity of the modified membrane with plasma could be improved by an appropriate control of the plasma conditions such as treatment time, the power input and sort of plasma gas.

A Study on the Model Test for Pneumatic Mine-Filling (공압식 갱내충전을 위한 모형실험 연구)

  • Yang, In-Jae;Shin, Dong-Choon;Yoon, Byung-Sik;Mok, Jin-Ho;Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.449-463
    • /
    • 2014
  • There are many case studies and application cases in abandoned mines for hydraulic filling method filled by slurry or paste form, but research on the pneumatic filling is not applied in Korea. The damage of steel pipe is occurred by wear due to the flow of filling material in the bent area of steel pipe in traditional pneumatic filling method. In this study, the new pneumatic filling method was developed using a newly devised improved nozzle to improve the above problem. The model test for mine filling was performed in the laboratory for the simulated accessible or inaccessible mine cavities, and the filling efficiency by the results obtained from the test was calculated. The filling efficiency was analyzed from the variation of outlet angle, feed rate and grain size of sand in model test of simulated accessible mine cavity. The superiority of improved pneumatic filling method was proved through the analysis of filling efficiency by the results obtained from each model tests of gravitational, traditional, and improved filling method in simulated inaccessible mine cavity.

An Experimental Study on Scour at V-shaped Riffle (V형 여울에서 발생하는 세굴에 관한 실험 연구)

  • Yu, Dae-Young;Park, Jung-Hwan;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.507-520
    • /
    • 2003
  • A V-shaped riffle is an artificial hydraulic structure haying two wings from the streamside with a narrow opening in between. It is usually made of crushed stones or large boulders. It limits channel width and accelerates the flow through the constricted section causing a local scour just downstream. The V-shaped riffle provides with a unique aquatic habitat by forming a pool and sandbars around the pool edge, increasing local morphologic, hydraulic and sedimentological diversity. This study investigates experimentally the scour characteristics of the V-shaped riffle in the sandbed stream and proposes a predictive equation for the scour. Total 45 cases of experiments were conducted to examine the effect of hydraulic factors and configuration of V-shaped riffle on the geometry of scour holes. From the comparison of the experimental results of this study with the predictive equation of spur dike by Breusers and Raudkivi(1991), it is found that their predictive equation of spur dike underestimates the maximum scour depth downstream of the V-shaped riffle. h new predictive equation for the maximum scour depth was developed using the non-dimensional hydraulic and geometrical variables. The parameters used in the proposed equations were determined using the experimental data. The analysis reveals that the scour depth is dependent dominantly on the Froude number at the opening of the V-shaped riffle, while the angle of riffle and the opening width also affect the scour depth. The proposed equation for the scour of V-shaped riffle well agrees with the experimental data. It can be used for estimating the scour of the V-shaped riffle in sandbed streams.

Mass Reduction and Physicochemical Properties of the Produced Compost during Composting Domestic Food Wastes in a Small Composter (소형 퇴비화용기에서 가정 음식물쓰레기의 퇴비화 과정 중 감량화 및 생산 퇴비의 물리화학적 특성)

  • Park, Ju-Won;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.238-243
    • /
    • 2001
  • Mass reduction and physicochemical properties of the produced compost were investigated during composting domestic food wastes without additive. A small composter used in this study had the height of 15 cm from the center of bottom half circle (diameter 24 cm) up to under the lid, the side length of 50 cm and the horizontal lid angle of $50^{\circ}$ and was operated at the heating unit temperature of $85^{\circ}$. It was mixed by the rotating arm for two minutes in every half hour while supplied with air flow at 3 L/min for 10 minutes in every half hour. This condition was found in a preliminary experiment as optimal for keeping the water content of composting material in the optimal range without adding any bulking materials. The domestic food wastes were added into the composter at the rate of 1 kg/day without additives during composting. The results were as follows; during the composting process, water content maintained in the range of $51.0{\sim}53.5%$. Hemicellulose and lignin contents did not show any tendency, but cellulose content decreased. During the composting process, $NH_3-N$ and $NO_2-N$ were not detected due to nitrification. The contents of inorganic compounds did not increase during the composting process. They were in the range of $1.32{\sim}1.71%\;P_2O_5$, $1.29{\sim}1.48%\;CaO$, $0.41{\sim}0.49%\;MgO$, and $0.38{\sim}0.74%\;K_2O$. For 20 days, weight reduction rate was 67.5% in wet basis, and decomposition rate was 48% in dry basis. Concentration of heavy metals (Cu, Cr, Cd, Pb, Zn, Hg, As) was less than the limiting value of the compost. Maturity of the produced compost was 3 grade through reaching maximum temperature of $46{\sim}48^{\circ}C$.

  • PDF

Infinite Slope Stability Analysis based on Rainfall Pattern in Ulleung-do (울릉도지역 강우패턴을 고려한 무한사면 안정성 해석)

  • Lee, Chung-Ki;Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of slope stability analysis is to predict the location and occurrence time considering the rainfall, topographic and soil characteristics, etc. In this study, infinite slope stability analysis considering the time distribution characteristics of the daily maximum rainfall was conducted using a model that combines a digital terrain model and a groundwater flow model. As the results of slope stability analysis, 69.1~70.0% of Fs < 1 cells are in the range of slope angle $20{\sim}50^{\circ}$ and Fs < 1 starts to appear in 2 hours for $Q_1$ model, 5 hours for $Q_2$, 7 hours for $Q_3$ and 6 hours for $Q_4$. Furthermore, the maximum number of Fs < 1 cells appear in 6 hours for $Q_1$ model, 12 hours for $Q_2$, 16 hours for $Q_3$ and 20 hours for $Q_4$, and the area of Fs < 1 is 14.3% for $Q_1$ model, 15.0% for $Q_2$, 15.6% for $Q_3$, and 16.3% for $Q_4$.

Synthetic Study on the Geological and Hydrogeological Model around KURT (KURT 주변 지역의 지질모델-수리지질모델 통합 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area.

Geometric Characteristics of Landslides on Natural Terrain according to the Geological Condition (지질조건에 따른 자연사면 산사태의 기하학적 특성)

  • Kim, Kyeong-Su;Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.75-87
    • /
    • 2007
  • The recognitions of geometrical characteristics and occurrence conditions are very important to evaluate the land-slides in natural terrains. In this paper, the geometrical characteristics of landslides are analyzed according to a geo-logical condition in three landslides areas. The three landslides areas are classified to the geological condition. The three landslides areas are Jangheung, Sangju and Pohang. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. During a heavy rainfall of $150{\sim}588mm$ in these areas, 1,582 landslides have occurred in 1998. The geometrical characteristics according to the geological condition analyzed from the investigation of these landslides. The frequency of landslide is high exceedingly above 90% of a slope attitude, while the frequency is very low below 70%. The frequency of landslide is high exceedingly between $26^{\circ}$ and $30^{\circ}$ of slope angle, while the frequency is very low below $20^{\circ}$. The size of the landslides is ranged from several tens to several hundreds The length is ranged from 5 m to 300 m, and the width is ranged from 3 m to 50 m. Also, the depth is less than 1 m. Therefore, the landslides in these areas have small width, long length and shallow depth. The type of the landslides is changed from transitional slide at the scarp to debris flow at the low part of slope.

A Study on Optimal Shape of Stent by Finite Element Analysis (유한요소 해석을 이용한 스텐트 최적형상 설계)

  • Lee, Tae-Hyun;Yang, Chulho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.1-6
    • /
    • 2017
  • Stents are widely used as the most common method of treating coronary artery disease with implants in the form of a metal mesh. The blood flow is normalized by inserting a stent into the narrowed or clogged areas of the human body. In this study, the mechanical characteristics of a stent are investigated according to the variations of its design parameters by the Taguchi method and finite element analysis. A stent model of the Palmaz-Schatz type was used for the analysis. In the analysis, an elasto-plastic material model was adopted for the stent and a hyper-elastic model was used for the balloon. The main interest of this study is to investigate the effects of the design parameters which reduce the possibility of restenosis by adjusting the recoil amount. A Taguchi orthogonal array was constructed on the model of the stent. The thickness and length and angle of the slot were selected as the design parameters. The amounts of radial recoil and longitudinal recoil were calculated by finite element analysis. The statistical analysis using the Taguchi method showed that optimizing the shape of the stent could reduce the possibility of restenosis. The optimized shape showed improvements of recoil in the radial and longitudinal directions of ~1% and ~0.1%, respectively, compared to the default model.

A Study on the Resistance Characteristics of Leisure Boat According to Chine Shape (차인 형상에 따른 레저선박의 저항특성에 관한 연구)

  • Kim, Juyeol;Choi, Junho;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.566-573
    • /
    • 2017
  • The chine of high speed vessels does not only play a role in changing position when planing but also helps balancing the hull. It also has a great influence on resistance performance. However, designing a chine requires a lot of experience because it is influenced by various factors such as displacement, transom shape, draft and width. Such a design is not based on an empirical formula, but the purpose of this study is to provide basic guidelines regarding the shape of chine through calculation. This design was developed using Yacht-one, a commercial design program, and analysis was performed using Star-CCM+, also a commercial analysis program. Analysis of the hull selected in this study was carried out by Dynamic Fluid Body Interaction (DFBI) method. Analysis of the chine was carried out at chine angles of 15, 16, 17, and 19degrees, at a speed of 30knots. The result indicated that the highest trim occurred at 16 degrees among the four chine angles considered, and the highest heave occurred at 15degree. In terms of resistance performance, minimum resistance was observed at 16 degrees. Consequently, for minimum ship resistance, it is necessary to complete calculations in accordance with the chine angles, ${\pm}2$ degrees from the initial chine angle, which should be carried out a the design stage.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF