• Title/Summary/Keyword: floor strengthening

Search Result 46, Processing Time 0.023 seconds

Analytical Studies on Seismic Performance of Multi-Story Coupled Piping System in a Low-Rise Building

  • Jung, WooYoung;Ju, BuSeog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.181-186
    • /
    • 2013
  • The construction costs for nonstructural systems such as mechanical/electrical equipment, ceiling system, and piping system occupy a significant proportion of the total cost. These nonstructural systems can also cause considerable economic losses and loss of life during and after an earthquake. Therefore, reduction of seismic risk of nonstructural components has been emerging as a key aspect of research in recent year. The primary objective of this study was to evaluate the seismic performance of a single-story and multi-story piping system installed in low-rise building and to identify the seismic vulnerability of the current piping systems. The seismic performance evaluation of the piping systems was conducted with 5 different earthquakes to account for the ground motion uncertainty and the preliminary results demonstrated that the maximum displacements of each floor in the multi-story piping system increased linearly with increasing floor level in the building system. This study revealed that the current design piping systems are significantly sensitive to the effect of floor height, which stress the necessity to improve the seismic performance of the current piping systems by, for example, strengthening with seismic sway bracing using transverse/longitudinal bracing cables or hangers.

A Study on the Crack Prevention of the Floor Surface Finishing Mortar adding Chemical Admixtures in Apartment Houses (혼화제를 사용한 공동주택 바닥마감 모르타르의 균열저감에 관한 연구)

  • Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1541-1548
    • /
    • 2015
  • In this study, strengthening methods of floor surface finishing mortar are investigated to prevent the cracks using crack inhibitor agents, water reducer agent and resin. As a results, The number of crack and compressive strength of the specimen containing water reducer agent or resin had more effective than other specimens containing inhibitor agents at 7 days. And the highest compressive strength specimen showed the relatively no crack, but the lowest compressive strength specimen showed a lot of crack. Therefore the relationship between the crack growth and the compressive strength had proportional connection. A base on the mock-up test, long-term monitoring of the on-site applied to mixing design type3 showed the few cracks.

A Study on the Improvement of Fire Protection Door Performance in Apartment Houses through Analytic Hierarchy Process (AHP) (계층적분석기법을 통한 공동주택의 방화문 기능 개선에 관한 연구)

  • Ha, Joo-Ik
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.540-547
    • /
    • 2019
  • Purpose: This paper is for the improvement of the fire gate performance that occurs between the construction company and the residents. A survey was conducted on experts in the construction to prepare the causes and measures for the suit. Method: The application of the Analytic Hierarchy Process(AHP) resulted in the following conclusions. Results: TIn the 2nd tier, 28percent of the "strengthening standards for installation of fire prevention zones" included in the "institutional strengthening of stnadards" of the 1st tier had higher importance. In the 3rd tier, "strengthening the installation standards by floor area" and "strengthening the standard of fire-resistant structures" showed high importance. Conclusion: The results suggest that detailed legal criteria for detailed installation criteria with varying site conditions are needed.

An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - II : Repair · Strengthening Method (철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - II : 보수·보강 방법)

  • Li, Guang Ri;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.307-313
    • /
    • 2009
  • In this study, in order to research the repair-strengthening methods, when fatigue crack occurs in the coped stringers of a steel railway bridge, we manufacture the full size of crossbeam-stringer and floor system model. Also the experimental test is performed on the coped stringers applying the repair-strengthening methods using the stop hole, combination plate, connection plate, bracket, and so on. The results indicate that, the most effective method is to set up connection plate and bracket in the top flange and bottom flange of the stringers, while we can consider the method of punching stop holes in the end of the crack as a subsidiary method. It is necessary to set up the combination plate when the length of crack is quite long.

Vulnerability and seismic improvement of architectural heritage: the case of Palazzo Murena

  • Liberotti, Riccardo;Cluni, Federico;Gusella, Vittorio
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.321-335
    • /
    • 2020
  • The aim of the present contribution is to consider and underline the essential interactions among the historical knowledge, the seismic vulnerability assessment, the investigation experimental tools, the preservation of the architectural quality and the strengthening design in regard to architectural heritage conservation. These topics are argued in relation to Palazzo Murena in Perugia, designed in the eighteenth century by the famous Architect Luigi Vanvitelli, and currently headquarters of the city's University. Based on the surveys and the visual inspections, a preliminary a priori global analysis has been performed by means of the FME method. The obtained results permitted to plan an experimental tests campaign inclusive of structural health monitoring. The new achieved "knowledge" of the building allowed to refine the seismic safety assessment. In particular it was highlighted that the "mezzanine floor" can be a vulnerable element of the building with the collapse of its masonry walls. Preserving the architectural characteristics, a local reinforcement intervention is proposed for the above-mentioned level; this consists of the application of plaster with FRCM, assuring an adequate strength, without burden the masonry structure with additional weight, and therefore a decreasing of the seismic vulnerability. The necessity to consider, in this ongoing research, other local mechanisms is highlighted in the unfolding of the last part of work.

Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance

  • Vandoros, Konstantinos G.;Dritsos, Stephanos E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.43-61
    • /
    • 2006
  • An investigation of the effectiveness of the interface treatment when column concrete jacketing is performed is presented. Alternative methods of interface connection were used in order to investigate the performance of strengthened concrete columns. These connecting techniques involved roughening the surface of the original column, embedding steel dowels into the original column and a combination of these two techniques. The experimental program included three strengthened specimens, one original specimen (unstrengthened) and one as-built specimen (monolithic). The specimens represented half height full-scale old Greek Code (1950's) designed ground floor columns of a typical concrete frame building. The jackets of the strengthened specimens were constructed with shotcrete. All specimens were subjected to displacement controlled earthquake simulation loading. The seismic performance of the strengthened specimens is compared to both the original and the monolithic specimens. The comparison was performed in terms of strength, stiffness and hysteretic response. The results demonstrate the effectiveness of the strengthening methods and indicate that the proper construction of a jacket can improve the behaviour of the specimens up to a level comparable to monolithic behaviour. It was found that different methods of interface treatment could influence the failure mechanism and the crack patterns of the specimens. It was also found that the specimen that combined roughening with dowel placement performed the best and all strengthened columns were better at dissipating energy than the monolithic specimen.

The Effects of Pelvic Floor Stabilization exercise on Pain, Function, Psychosocial, EMG Activity on the Lower Back Pain with Postpartum Women (골반 안정화운동이 산후 요통 여성에게 통증, 기능장애, 심리사회적수준, 근활성도에 미치는 영향)

  • Lee, Min-ji;Kwon, O-kook;Song, Hyun-seung
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.17-27
    • /
    • 2018
  • Background: This study investigated the effects of pelvic floor stabilization exercise of pain, disfunction, psychosocial, electromyography (EMG) activity on the lower back pain with postpartum. Methods: The study included 20 postpartum women who were randomly assigned to a sling exercise group (SEG, n=10) or a general physical therapy group (GPTG, n=10). Outcomes were assessed using to lower back pain with postpartum the quadruple visual analogue scale (QVAS), the Korean version of the Oswestry disability index (KODI), the fear avoidance belief questionnaire (FABQ), the inventory of functional status after childbirth (IFSAC), the edinburgh postnatal depression scale-Korean (EPDS-K), and trunk muscle activity before and after a 4-week exercise intervention. Statistical analysis were performed using a mean, standard deviation, crosstab test, paired t-test, independent t-test. Kolmogorove-Smirnov test was used for test of normality. Results: Compared to the GPTG, the SEG showed significant improvement in the QVAS, KODI, FABQ, IFSAC, and EPDK-K scores (p<.05) after 4 weeks. Conclusion: Postpartum pelvic strengthening exercise proved to have a positive effect.

The Improvement of Design Inducement Incentive on Permitted Floor Area Ratio in District Detailed Plan -Focused on the Design Inducement Incentive items and parameters in formula- (서울시 지구단위계획 구역내 건축물의 계획유도를 위한 허용용적률 인센티브 개선방안 - 항목 및 세부계획기준의 계수를 중심으로)

  • Rim, Eun Young;Lee, Seung Joo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.49-57
    • /
    • 2017
  • Purpose: Design inducement incentive item and formula on permitted floor area ratio in district detailed plan have been improved to reflect the actual application of guidelines and the social needs of city and architecture. However, the current guideline has a limit to realize the purpose of the plan. This study proposes improvement of the items and parameters in formula. Method: This study analyzed the district detailed planning guidelines since 2000 and the cases of general type district unit plan. In order to propose improved items and parameters, planing purposes and present parameters were compared and analyzed. Result: Items of guidelines have been changed according to public needs. High necessity items were applied to large parameters, and these items have been changed as the guideline changes. Diversity of items depended on regional characteristics, and parameters were more flexible than items for most cases. The purposes of plans, parameters and items were analyzed and it revealed four items needed improvement; the inducement of the limited building line, the improvement of the pedestrian and street environment, the necessity of the open space, and strengthening of the regional agreement. For improvement, this study added items and improved the relevance between items and sub-items. The parameters were improved by considering the importance, feasibility and comparing them with each other. Simulated result confirmed that proposed guideline is appropriate to operate, and also characteristics of area encourage to operate it more flexible.

A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall (외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구)

  • Kim, Sun-Woo;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF

Application of a ductile connection system to steel MRF strengthened with hinged walls

  • Zhi Zhang;Yulong Feng;Dichuan Zhang;Zuanfeng Pan
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.487-498
    • /
    • 2024
  • Steel moment resisting frames (MRFs) typically have inter-story drift concentrations at lower stories during earthquakes as found from previous research. Hinged walls (HWs) can be used as structural strengthening components to force the MRFs deform uniformly along the building height. However, large moment demands are often observed on HWs and make the design of HWs non-economical. This paper proposes a method to reduce the moment demand on HWs using a ductile connection system between the MRFs and the HWs. The ductile connection system is designed with a yield strength and energy dissipation capacity, for the purpose of limiting the seismic forces transferred to the HWs and dissipating seismic energy. Nonlinear time history analyses were performed using 10 far-filed earthquakes at maximum considered earthquake level. The analysis results show that the proposed ductile connection system can reduce: (1) seismic moment demands in the HWs; (2) floor accelerations; (3) the connection force between HWs and MRFs.