• Title/Summary/Keyword: floor slab method

Search Result 119, Processing Time 0.033 seconds

An Experimental Study on the Development of Semi-Slim Composite Beam with Traperzodial Composite Deck Plate (골형 합성 테크플레이트를 사용한 반슬림 합성보의 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Oh, Sang-Hoon;Heo, Byung-Wook;Yang, Myung-Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.29-40
    • /
    • 2001
  • Steel frames are increasingly used in commercial buildings. and most steel frames are designed to achieve composite action with the concrete floor slab. The advantages of 'composite construction' are now well understood in terms of structural economy. good performance in service. and ease of construction. But. these conventional composite construction system are difficult to apply steel framed apartment due to their large depth. So. in this study we developed Semi Slim Floor system which could reduce the overall depth of composite beam. Semi Slim Floor system is a method of steel frame multi-story building construction in which the structural depth of each floor is minimised by incorporating the steel floor beams within the depth of the concrete floor slab. Twelve composite slab specimens with different deck-type. slab width. with or without stud bault and concrete topping thickness were tested to evaluate the flexural capacity.

  • PDF

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

Development of One-way Void Support Device for Flexible Table Form (가변형 테이블폼용 일방향 중공관 지지장치 개발)

  • Kwon, Woobin;Lee, Dongmin;Lee, Changsu;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.12-13
    • /
    • 2019
  • Flexible Table Form is being used more frequently at the level of formwork in construction site. However, one of the most common structural frameworks, the RC column-beam structure, is having problems in these factors. To improve this problems, this study developed support devices and proposed installation specifications to enable application of the one-way void slab method to flexible table form. It is expected that the effects of reducing the self-weight of the slab in the floor slab construction using flexible table form.

  • PDF

Application of Finite Element Method to Floor Impact Vibration Analysis in the Apartment Buildings (공동주택의 바닥 충격 진동 해석을 위한 유한요소법 응용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Finite element method was applied to the vibration analysis of concrete slab system in apartment building. To save the time and cost the 2 dimensional finite element model was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Second, there is linear relationship between the impact sound pressure level and vibration acceleration level. Third, 2 dimensional finite element model was enough to analyze the vibration analysis of floor structure system.

  • PDF

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

Reduction Method for Floor Impact Noise on APT Remodeling (공동주택 리모델링 현장의 바닥충격음 저감대책)

  • Park, Cheol-Yong;Hong, Goo-Pyo;Lee, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.524-525
    • /
    • 2009
  • Heavy-weight impact noise(HN) is the most irritating noise in Korean apartment houses. It has been proclaimed standard floor system of 210mm thick slab with isolation material in the wall type structure. But this regulation is applied only new construction field and is not considered remodeling field. In general, the LN can be reduced by using isolation material but HN is known as relating with stiffness, strength & boundary condition of slab. Therefore it is difficulty in improving the HN on remodeling field. In this study, We conducted the reinforcement of concrete slab using C.F.S.(carbon fiber sheet), steel plate and steel beam after on-dol with isolation material on the remodeling field. As the test results, It appeared using C.F.S was no improved but using steel plate & steel beam were a little improved on HN.

  • PDF

Improvement In the Serviceability of Floor Slab of Remodeled Building and the Performance of Floor Impact Noise (리모델링 건축물의 바닥슬래브 사용성 및 바닥충격음 성능개선)

  • Lee, Byung-Kwon;Bae, Sang-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1243-1246
    • /
    • 2006
  • As remodeling market is growing and peoples' concern on health and well-being is getting high, there is a need to apply environmentally friendly approach to remodeling an apartment houses. But, in point of the impact noise concerned, the thickness of the concrete slab and the limited ceiling height of the remodelling houses are the main constraints to improve the impact noise performance. In order to investigate the effect of the impact noise isolation as structural treatments for the structural elements, heavy-weight impact noise and tapping noise were measured in an remodeling building. As a result, structural strengthening method by H-beam was successful to enhance the impact noise level at about 3 or 4 class by the sound classification system.

  • PDF

A Study of Rating Method Comparison for Heavy-weight Floor Impact Sound based on the Field Test Data in Apartment Houses (공동주택 중량바닥충격음 현장측정을 통한 차단성능 평가방법의 비교검토 연구)

  • Shin, Hoon;Back, Geon Jong;Kook, Chan;Song, Min Jeon;Kim, Sun Woo
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.187-194
    • /
    • 2010
  • Heavy-weight floor impact sound insulation performance criteria have been effective in Korea since the regulation which enforces the standard thickness of slabs in domestic apartment houses should be constructed by 180mm or 210mm was adopted. But every slab does not satisfy this criteria. So, review on existing floor impact sound insulation performance is needed to propose some basic materials for the revision of rating method. To achieve this goal, 63 field test data were checked and analyzed. The results of this study are as follows ; 1) The 210mm thickness slab has the characteristics of deeper level decrease above 120Hz frequency band than that of 180mm thickness slab's. 2) 27.5% of 180mm thickness slabs were satisfied the floor impact sound insulation performance criteria, whereas 65% of 210mm slabs do. 3) Among the main contribution frequency bands for the determination of single rating index, 63Hz was shown as the most contributive band in 210mm slabs. 4) In comparison of single rating index between bang machine test and ball test. there is a big difference between the two and this phenomenon is frequent in 210mm slab results. 5) Rating Methods for the analysis of cross-correlation between the amount of rating, the usefulness of the arithmetic mean could be secured.

A Evaluation Study on Reduction Method of Floor Impact Noise through Field Test and the Effective Method for Heavy Impact Noise (현장실험을 통한 바닥충격음 저감공법의 성능평가 및 중량충격음 저감 방안)

  • Lee, Byung-Kwon;Bae, Sang-Hwan;Hong, Cheon-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.451-456
    • /
    • 2004
  • In this study, evaluation was carried out for reduction method of floor impact noise through field test and the effective methods for heavy impact noise were proposed. As a field test, impact noise reduction materials such as EPP, EEPS, EVA, PE and so on, did not satisfied the recommandation value at the condition of 150mm thickness concrete slab. The evaluation results for those materials by 'inverse A curve' showed $53\sim55dB$ at heavy impact noise and $53\sim58dB$ at light impact noise. But, two methods proposed by authors were evaluated $47\sim50dB$ at heavy Impact noise and $54\sim58dB$ at light Impact noise on the similar concrete slab thickness.

  • PDF

Seismic Analysis of Flat Slab Structures considering Stiffness Degradation (강성저감을 고려한 플랫슬래브 구조물의 지진해석)

  • 김현수;이승재;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF