• Title/Summary/Keyword: floor rotation

Search Result 41, Processing Time 0.025 seconds

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.

Seismic Retrofit of Welded Steel Moment Connections Considering the Presence of Composite Floor Slabs (바닥슬래브를 고려한 용접철골모멘트접합부의 내진보강)

  • Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.25-36
    • /
    • 2017
  • In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange was prevalent. The presence of a concrete slab and resulting composite action was speculated as one of the critical causes of the prevalent bottom flange fracture. In this study, four seismic retrofit schemes are proposed in order to salvage welded steel moment connections with composite floor slabs in existing steel moment frames. Because top flange modification of existing beams is not feasible due to the presence of a concrete floor slab, three schemes of bottom flange modification by using welded triangular or straight haunches or RBS(reduced beam section), and beam web strengthening by attaching heavy shear tab were cyclically tested and analyzed. Test results of this study show that haunch and web-strengthened specimens can eliminate the detrimental effect caused by composite action and ensure excellent connection plastic rotation exceeding 5% rad. Design recommendations for each retrofit scheme together with supplemental numerical studies are also presented.

A Study on Inelastic Behavior of an Asymmetric Tall Building (비대칭 초고층건물의 비탄성거동에 관한 연구)

  • 윤태호;김진구;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper, the inelastic behavior of an asymmetric tall building is investigated. The asymmetry in rigidity caused by the structural asymmetry induces torsional as well as lateral deformation. The inelastic analysis of such an asymmetric structure is difficult to carry out with a planar model and thus requires a full three dimensional model. In this paper a 102 story unsymmetric tall building is analized by static push-over procedure and its behavior is investigated. The analysis are performed with and without floor rotation to compare the results. According to the results the static behavior of the model building, as expected, turned out to be dependent heavily an the asymmetry of the plan shapes of the building.

  • PDF

3-D Imaging in a Chaotic Micromixer Using Confocal Laser Scanning Microscopy (CLSM) (공초점 현미경을 이용한 마이크로믹서 내부의 3차원 이미지화)

  • Kim, Hyun-Dong;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.96-101
    • /
    • 2006
  • 3-D visualization using confocal laser scanning microscopy (CLSM) in a chaotic micromixer was performed as a reproduction experiment and the feasibility of 3-0 imaging technique in the microscale was confirmed. For diagonal micromixer (DM) and two types of staggered herringbone micromixers (SHM) designed by Whitesides et al., to verify the evolution of mixing, cross sectional images are reconstructed at the end of every cycle. In a DM, clockwise rotational flow motion generated by diagonal ridges placed on the floor of micromixer is observed and this motion makes the fluid commingle. On the contrary, there are two rotational flow structures in the SHM and the centers of rotation exchange their position each other every half cycle because of the V shape of ridges varying their orientation every half cycle. Local rotational flow and local extensional flow generated by the complicate ridge pattern make the flow be chaotic and accelerate the mixing of fluid. The dominant parameter that influences on the mixing characteristic of SHM is not the length of micromixer but the number of ridges under the same flow configurations.

  • PDF

Behaviour of cold-formed steel concrete infilled RHS connections and frames

  • Angeline Prabhavathy, R.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.71-85
    • /
    • 2006
  • This paper presents the results of a series of tests carried out on cold-formed steel rectangular hollow and concrete infilled beam to column connections and frames. A stub column was chosen such that overall buckling does not influence the connection behaviour. The beam chosen was a short-span cantilever with a concentrated load applied at the free end. The beam was connected to the columns along the strong and weak axes of columns and these connections were tested to failure. Twelve experiments were conducted on cold-formed steel direct welded tubular beam to column connections and twelve experiments on connections with concrete infilled column subjected to monotonic loading. In all the experiments conducted, the stiffness of the connection, the ductility characteristics and the moment rotation behaviour were studied. The dominant mode of failure in hollow section connections was chord face yielding and not weld failure. Provision of concrete infill increases the stiffness and the ultimate moment carrying capacity substantially, irrespective of the axis of loading of the column. Weld failure and bearing failure due to transverse compression occurred in connections with concrete infilled columns. Six single-bay two storied frames both with and without concrete infill, and columns loaded along the major and minor axes were tested to failure. Concentrated load was applied at the midspan of first floor beam. The change in behaviour of the frame due to provision of infill in the column and in the entire frame was compared with hollow frames. Failure of the weld at the junction of the beam occurred for frames with infilled columns. Design expressions are suggested for the yielding of the column face in hollow sections and bearing failure in infilled columns which closely predicted the experimental failure loads.

Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System (수치해석을 이용한 바닥공조 시스템의 공기환경 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin;Lee, Won-Keun;Moon, Ki-Sun;Kim, Jongryul;Lee, Kwang-ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

A Study on User's Wayfinding Information-Seeking Behavior When Using the Mobile Map Application on Foot (도보 상황에서 모바일 지도 애플리케이션 이용자의 길 찾기 정보추구행위에 관한 연구)

  • Gwon, Hyeon Jeong;Lee, Jee Yeon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.1
    • /
    • pp.469-492
    • /
    • 2021
  • This study aims to find an optimal method for the mobile map application to provide directions by analyzing users' behavior in wayfinding and the information referenced in the direction-finding tasks. The mobile application provided information such as 'the name of the store on the first floor,' 'current location and directions to proceed if there are multi-branching roads,' and 'alleyways.' In the visual representation of information, the application should pay attention to 'landmark elements such as subway station exits and bus stops,' 'the color of crosswalks and overpasses,' 'division between sidewalks and driveways,' and 'entry to the subway stations.' For the mobile map application to provide intuitive interaction, it is necessary to specify 'the direction toward the destination,' 'the possible rotation of the map screen,' and 'the big roads' preference guidance.'

Characteristics of Vegetation Structure in Chamaecyparis Obtusa Stands (편백림의 식생구조 특성 분석)

  • Park, Seok-Gon;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.907-916
    • /
    • 2015
  • The purpose of this study was to identify characteristics of vegetation structure, vegetation succession, and species diversity of artificially planted Chamaecyparis obtusa (CO) stands. The study was carried out by performing vegetation survey for eight CO stands located in Jeollanam-do Province, Korea. Analysis on vegetation classification and ordinations of the stands was conducted using the data from the vegetation survey, and as a result, the stands were classified into five types of communities. Community I showed a considerably lower index of species diversity when compared to other communities because the canopy of the dominant CO was so highly dense that the low-height vegetation was not able to develop or the low-height vegetation almost disappeared due to elimination of weed trees. Meanwhile, the Community II - IV had relatively higher indices of species diversity because various native tree species mixed with the low-height vegetation and competed with each other in the understory and shrub layers to some degree of stability or in their early stage of vegetation development. Community V, lastly, showed higher use intensity as a recreational forest, thus developing simpler vegetation structure on account of artificial intervention. There was positive correlation between photosynthetically active radiation entering the forest floor, number of observed species and index of species diversity. Such characteristics of vegetation structure in CO stands are closely associated with forest management and prescription for planting reforestation, thinning, and brush cutting in the past. There was a slight difference in vegetation structure and species diversity by communities, based on rotation time of the vegetational succession, process of disturbance frequency and disturbance, development, and maturity by planting CO stands. However, when compared to natural forests, the CO stands showed simpler vegetation structure. Because artificial forests are vulnerable in ecosystem service with lower species diversity, a drive for ecological management is needed for such forests to change into healthy ecosystems that can display functions of public benefit.

Diagnostic imaging analysis of the impacted mesiodens (매복 정중치의 진단영상분석)

  • Noh, Jeong-Jun;Choi, Bo-Ram;Jeong, Hwan-Seok;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.40 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • Purpose : The research was performed to predict the three dimensional relationship between the impacted mesiodens and the maxillary central incisors and the proximity with the anatomic structures by comparing their panoramic images with the CT images. Materials and Methods : Among the patients visiting Seoul National University Dental Hospital from April 2003 to July 2007, those with mesiodens were selected (154 mesiodens of 120 patients). The numbers, shapes, orientation and positional relationship of mesiodens with maxillary central incisors were investigated in the panoramic images. The proximity with the anatomical structures and complications were investigated in the CT images as well. Results : The sex ratio (M : F) was 2.28 : 1 and the mean number of mesiodens per one patient was 1.28. Conical shape was 84.4% and inverted orientation was 51.9%. There were more cases of anatomical structures encroachment, especially on the nasal floor and nasopalatine duct, when the mesiodens was not superimposed with the central incisor. There were, however, many cases of the nasopalatine duct encroachment when the mesiodens was superimpoised with the apical 1/3 of central incisor (52.6%). Delayed eruption (55.6%), crown rotation (66.7%) and crown resorption (100%) were observed when the mesiodens was superimposed with the crown of the central incisor. Conclusion : It is possible to predict three dimensional relationship between the impacted mesiodens and the maxillary central incisors in the panoramic images, but more details should be confirmed by the CT images when necessary.