• Title/Summary/Keyword: floor height reduction

Search Result 36, Processing Time 0.028 seconds

Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates (플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.343-350
    • /
    • 2017
  • The RC flat plate system has benefits such as a short construction time, an improvement of workability and a floor height reduction. In the case of long span slab, cracking damages and large deflections tend to occur due to the low flexural stiffness of flat plates. Specially, over-loading by self-weight of slab during construction increases short and long-term deflections. These problems may be solved by the use of void slab that has benefits of the reduced self-weight. In this study, to analyze an effect of self-weight reduction of void slab on slab deflections, the parametric study is performed. Including variable conditions such as a concrete strength, a slab construction cycle, the number of shored floors, a compressive reinforcement ratio and a tensile reinforcement ratio, slab construction loads and deflections are calculated by considering the construction stages, concrete cracking, and long-term effects. The short-term deflections during construction and the long-term deflections after construction of both of normal and void slabs are compared and the effects of void slab on the reduction of slab deflections are analyzed.

Maxillary sinus augmentation using biphasic calcium phosphate: dimensional stability results after 3-6 years

  • Cha, Jae-Kook;Kim, Chingu;Pae, Hyung-Chul;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • Purpose: This study was designed to observe the resorption pattern of biphasic calcium phosphate (BCP) used for maxillary sinus augmentation over a 3- to 6-year healing period, and to investigate factors affecting the resorption of BCP. Methods: A total of 47 implants placed in 27 sinuses of 22 patients were investigated. All patients had residual bone height less than 5 mm at baseline. The modified Caldwell-Luc approach was used to elevate the maxillary sinus membrane, and the sinus cavity was filled with BCP (70% hydroxyapatite and 30% ${\beta}$-tricalcium phosphate). Implant placement was done simultaneously or in a staged manner. Serial radiographic analysis was performed up to 6 years postoperatively. Results: During the follow-up period, no implant loss was reported. The mean reduced height of the augmented sinus (RHO) was $0.27{\pm}1.08mm$ at 36 months, and $0.89{\pm}1.39mm$ at 72 months postoperatively. Large amounts of graft material (P=0.021) and a long healing period (P=0.035) significantly influenced the amount of RHO. In particular, there was a significant relationship between a healing period longer than 40 months and RHO. Conclusions: BCP can achieve proper dimensional stability with minimal reduction of the graft height in a 3- to 6-year healing period after maxillary sinus augmentation. The healing period and the amount of graft material influenced the resorption of BCP.

An Experimental study on the Structural Performance by the Depth Variation of Capacity of U-shaped composite Beam (U-형 복합보의 춤 변화에 따른 구조성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2020
  • The U-shaped composite beam used in this study consist of a reinforced concrete structure, a beam steel structure supporting the slab, a reinforced concrete structure, and a U-shaped steel plate. The U-shaped composite beam was developed for the purpose of using it as a parking lot because it is highly constructible and has low floor height and long span. For the improvement of constructivity, the U-shaped composite beam ends are planned with standardized H-shaped steel and connected directly to the columns, and the middle of the U-shaped composite beam consists of U-shaped steel plates folded in U-shaped form using thin steel plates (t=6) instead of H-shaped steel. In the middle of the composite beam, where U-shaped steel plates are located, the depth of U-shaped beam may be planned to be small so as to satisfy the height limit of the parking lot. It is important to grasp the structural performance according to the change of depth because low beam depth is advantageous for the reduction of the floor height, but it is a inhibitor to the structural behaviors of U-shaped composite beam. In addition, since U-shaped composite beams are a mixture of steel frame structures, reinforced concrete structures and U-shaped steel plates, securing unity has a great influence on securing structural performance. Therefore, in this study, a structural experiment was conducted to understand the structural performance according to the depth change for U-shaped composite beam. A total of three specimens were planned, including two specimens that changed the depth using a criteria specimen planned for a general parking lot. The results of the experiment showed that the specimens who planned the depth greatly had better structural performance such as yield strength, maximum strength, and energy than the standard specimen.

An Experimental Study on the Fire Resistance Capacity of Asymmetric Slimflor Beam (비대칭 H형강 슬림플로어 보의 내화 성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • Asymmetric Slimflor Beam had been unveiled with Thor beam (Hat beam) in Sweden since the late 1970s and had been developed by British Steen and SCI. In the major advanced countries in Europe after the early 1990s have interested in and developed this method, it has been concrened as the absence of hot-rolled section steel in the United Kingdom and welded of asymmetric section steel in Finland in the 2000s. It can be increase total floor area about 10%, save the interior and exterior materials, reduce the waste through reduction of the floor height. And it has more excellent fire resistance performance because less exposed than a regular composite steel beam in fire. This study is purpose that, a fire resistance performance of the Asymmetric Slimflor Beam in fire, it compared the temperature range with deflection of structure by fire behavior and load ratio of structure through change the shape of the steel cross-section in standard fire condition.

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.

Space Efficiency Improvement for Open Access Library -Focused on Book-storage Space of Academic Libraries in Province Area- (개가식 도서관의 공간효율 제고 방안 -지역 대학도서관 서고 공간을 중심으로-)

  • Ahn, Joon Suk
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • Due to an inability to accommodate for the rapidly increasing number of printed materials, Korean academic libraries are facing serious space shortage problems. Very few academic institutions have the funds to expand existing libraries or construct new facilities in order to accommodate the influx of printed materials. Despite not having the luxury to create new space, many establishments continue to implement the open access system. Seeing that such a system is only user friendly when used in a spacious facility, the maintenance of the open access system is unreasonable. Only few libraries consider the space efficient closed access system which helps to resolve storage space shortage. In the current state of the problem, improving the efficiency to which books are stored in existing storage areas within a library facility is the only appropriate solution. Enacting methods to improve physical space utilization within a fixed volume library facility will undoubtedly diminish the space shortage issue at hand. In this article, several space efficiency improvement approaches are discussed. Methods of book storage plan re-layout (floor, plan, ceiling, height, bookshelf design), book arrangement possibilities, and the reduction of the physical volume of reserved materials are each examined.

Numerical assessment of post-tensioned slab-edge column connection systems with and without shear cap

  • Janghorban, Farshad;Hoseini, Abdollah
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Introduction of prestressed concrete slabs based on post-tensioned (PT) method aids in constructing larger spans, more useful floor height, and reduces the total weight of the building. In the present paper, for the first time, simulation of 32 two-way PT slab-edge column connections is performed and verified by some existing experimental results which show good consistency. Finite element method is used to assess the performance of bonded and unbonded slab-column connections and the impact of different parameters on these connections. Parameters such as strand bonding conditions, presence or absence of a shear cap in the area of slab-column connection and the changes of concrete compressive strength are implied in the modeling. The results indicate that the addition of a shear cap increases the flexural capacity, further increases the shear strength and converts the failure mode of connections from shear rigidity to flexural ductility. Besides, the reduction of concrete compressive strength decreases the flexural capacity, further reduces the shear strength of connections and converts the failure mode of connections from flexural ductility to shear rigidity. Comparing the effect of high concrete compressive strengths versus the addition of a shear cap, shows that the latter increases the shear capacity more significantly.

Strut as a Permanent System using Composite Beams (층고절감형 거더를 이용한 영구 스트러트 공법)

  • Hong, Won-Kee;Park, Seon-Chee;Kim, Jin-Min;Lee, Ho-Chan
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Sheathing work used for excavation in a crowded downtown is generally a temporary strut method using H-piles and sheathing wall includes lagging, CIP, SCW or slurry wall. A temporary strut serving the support for sheathing wall acts to resist the earth pressure, but it shall be removed when installing the underground structure members. A traditional temporary strut might cause the stress imbalance of the sheathing wall when it is demolished, resulting in time extension and the risk of collapse. A traditional temporary strut method thus needs to be improved for schedule and cost reduction, risk mitigation and for preparation for potential civic complaint. A permanent strut method doesn't require installing and demolishing the temporary structure that will lead to reducing the time and cost and the structural risk during the demolition process. And given the girder, the part of the underground structure, serves the role of strut, it can secure the wider interval compared to the traditional method, which enables to secure the wider space for the convenience of excavation as well as enhance the constructability and efficient site management. The thesis was intended to study the composite girder designed to use the strut as permanent structure so as to reduce the excavation and floor height.

Condensation Reduction Study of an Apartment Underground Elevator Hall with respect to Dehumidifier Locations (제습기 설치 위치에 따른 공동주택 지하 엘리베이터홀의 결로 저감 연구)

  • Park, Jong-Jun;Kim, Young-Il;Kim, Jong-Yeob;Kim, Gil Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.169-174
    • /
    • 2014
  • Computational fluid dynamics simulation of an apartment underground elevator hall has been carried out to study the effect of dehumidifier locations on condensation problem. In Case 1, horizontal position of humidifier is studied. It is installed at entrance, center or the inside of the elevator hall. In Case 2, installation height is studied, one at 0 m and the other at 1.6 m above the floor. In Case 3, exposed and embedded dehumidifiers are compared for performance. The study shows that the entrance, top and exposed locations are more effective in reducing condensation.

A Study on the Reason for Change of Master Plan of Hospital Architecture in Design Process (병원건축 마스터플랜이 설계과정에서 변경되는 원인에 관한 연구)

  • Park, Cheolkyun;Yang, Naewon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.4
    • /
    • pp.7-15
    • /
    • 2018
  • Purpose: The life span of a hospital building is short. This is because the building will have to be built up due to the fact that it can not cope with the new medical environment, it can not be replaced due to low floor height, lack of land. The purpose of the hospital building master plan is to find a way to fulfill its role in the long term. Methods: Comparison the proposals submitted by the master plan and the proposals submitted by the hospitals, the case of three hospitals that have established a master plan for the past three years. In addition, interviews with the designers who participated in the design competition and the administrator of hospital about the variables that occurred during the business process. Results: The result of this study can be summarized into four points. The first one is that master plan is changed by administrator of hospital so that Thy need to understand about the role of master plan. And next is to protect reduction of the project cost. Third, continuous participation of master plan researchers in following projects is good to communicate with administrator and designer. The last one is empathy of master plan by designer and users. Implications: It is necessary to reduce changing of master plan in design process for sustainable managing of hospital.