• 제목/요약/키워드: floor height reduction

검색결과 36건 처리시간 0.024초

각형강관을 이용한 슬림플로어 시스템의 층고절감효과 비교 (Comparing floor height reduction effect of slim floor system with square steel pipe)

  • 조윤진;임홍철;김대유;류승일;김도균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.56-57
    • /
    • 2017
  • In recent years, new construction methods have been required to reduce the construction cost and increase the available area in an environment where construction work is frequently performed in a narrow urban area like Korea. As a result of these studies, slim floor composite beam has been suggested. Slim floor composite beam can reduce required depth because web of steel beam is embedded in the slab, so it is effective to reduce floor height and increase the available area. The purpose of this study is the floor height reduction evaluation by comparing system consisting of reinforced concrete, steel, and slim floor using square-shape steel pipe. After doing structural design for a typical plan, checked effectiveness by comparing each design plan. It is proven that slim floor composite beam can reduce required depth effectively comparing required materials of other system.

  • PDF

상악동저 거상술과 임플란트 식립 후 상악동저 변화에 대한 연구 (Radiographic change of grafted sinus floor after maxillary sinus floor elevation and placement of dental implant)

  • 조상호;김옥수
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.345-359
    • /
    • 2006
  • Loss of maxillary molar teeth leads to rapid loss of crestal bone and inferior expansion of the maxillary sinus floor (secondary pneumatization). Rehabilitation of the site with osseointegrated dental implants often represents a clinical challenge because of the insufficient bone volume resulted from this phenomenon. Boyne & James proposed the classic procedure for maxillary sinus floor elevation entails preparation of a trap door including the Schneiderian membrane in the lateral sinus wall. Summers proposed another non-invasive method using a set of osteotome and the osteotome sinus floor elevation (OSFE) was proposed for implant sites with at least 5-6mm of bone between the alveolar crest and the maxillary sinus floor. The change of grafted material in maxillary sinus is important for implant survival and the evaluation of graft height after maxillary sinus floor elevation is composed of histologic evaluation and radiomorphometric evaluation. The aim of the present study was radiographically evaluate the graft height change after maxillary sinus floor elevation and the influence of the graft material type in height change and the bone remodeling of grafts in sinus. A total of 59 patients (28 in lateral approach and 31 in crestal approach) who underwent maxillary sinus floor elevation composed of lateral approach and crestal approach were radiographically followed for up to about 48 months. Change in sinusgraft height were calculated with respect to implant length (IL) and grafted sinus height(BL). It was evaluated the change of the graft height according to time, the influence of the approach technique (staged approach and simultaneous approach) in lateral approach to change of the graft height, and the influence of the type of graft materials to change of the graft height. Patients were divided into three class based on the height of the grafted sinus floor relative to the implant apex and evaluated the proportion change of that class (Class I, in which the grafted sinus floor was above the implant apex; Class II, in which the implant apex was level with the grafted sinus floor; and Class III, in which the grafted sinus floor was below the implant apex). And it was evaluated th bone remodeling in sinus during 12 months using SGRl(by $Br\ddot{a}gger$ et al). The result was like that; Sinus graft height decreased significantly in both lateral approach and crestal approach in first 12 months (p$MBCP^{TM}$ had minimum height loss. Class III and Class II was increased by time in both lateral and crestal approach and Class I was decreased by time. SGRI was increased statistically significantly from baseline to 3 months and 3 months(p<0.05) to 12 months(p$ICB^{(R)}$ single use, more reduction of sinusgraft height was appeared. Therefore we speculated that the mixture of graft materials is preferable as a reduction of graft materials. Increasing of the SGRI as time goes by explains the stability of implant, but additional histologic or computed tomographic study will be needed for accurate conclusion. From the radiographic evaluation, we come to know that placement of dental implant with sinus floor elevation is an effective procedure in atrophic maxillary reconstruction.

층고절감을 위한 반슬림플로어 합성보의 휨성능 평가 (Flexural Performance Evaluation of Semi-slim floor Composite Beams for Reduction of Story Height)

  • 이은택;이상훈;장보라
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.165-173
    • /
    • 2008
  • 강구조 초고층건축물의 실용성을 높이기 위하여 내화성능이 우수하며 일반적인 합성보와 비교하여 층고절감이 가능하며 평면의 자유로운 변경과 공장생산에 의한 시공 품질관리가 가능한 새로운 공법개발이 시급하다고 판단된다. 따라서 기존 슬림플로어시스템의 문제점을 보완시킨 반슬림플로어를 적용한 합성보의 구조성능실험을 하였고, 이에 콘크리트와의 일체성 확보 및 휨에 대한 구조적 성능 등에 관한 연구를 수행하였다. 본 연구는 반슬림플로어시스템을 적용한 합성보의 휨거동을 평가하기 위한 것이다. 실험은 슬래브지지보의 구 조형식, 슬래브두께, 개구부의 설치 여부, 전단연결재의 유무를 변수로 하여 총 5개의 반슬림합성보에 대한 단순지지 휨실험을 수행하였다. 실험 결과 모든 실험체가 연성적인 거동을 보였다.

상악동저 거상술에서 이식재 양에 따른 이식골 높이 변화에 대한 방사선학적 평가 (A change of sinus floor level related to the amount of grafted material after bone added osteotome sinus floor elevation (BAOSFE) technique: A radiographic retrospective study)

  • 이지은;박소민;이종빈;방은경
    • 대한치과의사협회지
    • /
    • 제55권11호
    • /
    • pp.756-765
    • /
    • 2017
  • Purpose: The purpose of this article is to evaluate a change o bone level on the sinus floor by a bone added osteotome sinus floor elevation (BAOSFE) technique, according to the amount of deproteinized bovine bone mineral (DBBM). And Changes in augmented bone height after BAOSFE procedure were also assessed for 6 months after the implant procedure. Materials and Methods: Forty eight single implants were placed in the posterior maxilla using BAOSFE technique. The implantation sites were classified into two groups according to the amount of grafted DBBM, 0.25 group (0.25g) and 0.5 group (0.5 g). Panoramic views or cone-beam computed tomography (CBCT) were taken at the time of implant placement with BAOSFE and after at least 6 months to assess the bone level changes in the elevated sites with DBBM. Results: Alveolar bone level around all implants was stable clinically and radiographically during the follow-up. Mean augmented bone height was $5.21{\pm}0.94mm$ in 0.25 group and $6.92{\pm}1.19mm$ in 0.5 group. Statistically significant difference in augmented bone height was found in the comparison between the 0.25 group and 0.5 group at the time of surgery. There was a positive correlation between the length of the implant protruding into the maxillary sinus and the augmented bone height. After 6 months, mean reduction of augmented bone height was $0.50{\pm}0.34mm$ in 0.25 group and $0.41{\pm}0.30mm$ in 0.5group. There was no specific correlation between the reduction of augmented bone height and amount of grafted DBBM. Conclusion: Within the limit of this study, the amount of grafting materials and the protrusion length of implant into the maxillary sinus affect the amount of the augmented bone height.

  • PDF

Bone-added osteotome sinus floor elevation with simultaneous placement of non-submerged sand blasted with large grit and acid etched implants: a 5-year radiographic evaluation

  • Jung, Jee-Hee;Choi, Seong-Ho;Cho, Kyoo-Sung;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • 제40권2호
    • /
    • pp.69-75
    • /
    • 2010
  • Purpose: Implant survival rates using a bone-added osteotome sinus floor elevation (BAOSFE) procedure with simultaneous placement of a non-submerged sand blasted with large grit and acid etched (SLA) implant are well documented at sites where native bone height is less than 5 mm. This study evaluated the clinical results of non-submerged SLA Straumann implants placed at the time of the BAOSFE procedure at sites where native bone height was less than 4 mm. Changes in graft height after the BAOSFE procedure were also assessed using radiographs for 5 years after the implant procedure. Methods: The BAOSFE procedure was performed on 4 patients with atrophic posterior maxillas with simultaneous placement of 7 non-submerged SLA implants. At least 7 standardized radiographs were obtained from each patient as follows: before surgery, immediately after implant placement, 6 months after surgery, every year for the next 3 years, and after more than 5 years had passed. Clinical and radiographic examinations were performed at every visit. Radiographic changes in graft height were calculated with respect to the implant's known length and the original sinus height. Results : All implants were stable functionally, as well as clinically and radiographically, during the follow-up. Most of the radiographic reduction in the grafted bone height occurred in the first 2 years; reduction after 2 years was slight. Conclusions: The simultaneous placement of non-submerged SLA implants using the BAOSFE procedure is a feasible treatment option for patients with severe atrophic posterior maxillas. However, the grafted bone height is reduced during the healing period, and patients must be selected with care.

천공된 각형강관을 이용한 슬림플로어 합성보의 내력실험 (Strength Measurements of Slim Floor Composite Beams used Perforated Square Shape Steel Pipe)

  • 김동연;임홍철;박성운;김도균;류승일;박대원
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.189-190
    • /
    • 2015
  • Slim Floor construction method has to increase the available surface area thereby reducing the depth beams and slab. In addition, In this study compostie beam assembly of plates, square-shape steel pipe and deck plate. So workabiltiy is superior to the upper concrete possible without formwork. In the present study is strength test in progress in development slim floor composite beam used plate and perforated square shape steel pipe and obtained anlysis and conclustion of the experimental results.

  • PDF

공동주택 구조 유형별 바닥진동 및 바닥충격음 특성 (A Study on the Characteristics of the Floor Impact Noise and Vibration According to Structure Types of Apartment House)

  • 이규동
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.35-39
    • /
    • 2009
  • Recently, the flat-plate structure is widely used because it has many advantages such as reduction of story height, long span etc than the RC rahmen structure. Furthermore, application of the flat-plate is on the increase because of flexible plan unlike wall structure. Long span have been at a disadvantage for vibration serviceability evaluation, however studies about vertical direction vibration of flat-plate structure has not been carried out. This study analysis the characteristics according to slab structure to make an experiment on vibration and floor impact noise for the flat-plate structure in construction performance laboratory in Kolon E&C R&D center, the flat-plate structure applied to the post-tension method, and the wall structure in apartment houses.

  • PDF

GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가 (An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP)

  • 류재호;박세호;주영규;김상대
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.125-135
    • /
    • 2011
  • 최근 타워형 아파트구조에 많이 사용되고 있는 무량판 구조시스템을 대신해 층고절감 및 장스팬 구현 그리고 내화성능향상을 목적으로 GFRP를 이용한 경량합성바닥을 개발하였다. GFRP를 이용한 경량합성바닥은 웨브에 개구부를 가지는 비대칭 강재보 하부에 GFRP를 부착하고 슬래브에 경량체를 삽입한 중공합성바닥이다. 이에 개발된 합성바닥의 휨성능을 평가하기 위해 GFRP, 중공률, 웨브의 개구부 등을 변수로 실대 실험을 수행하였다. 그 결과 GFRP를 이용한 합성보 실험체는 기준 실험체에 비해 휨내력 및 강성 측면에서 10% 높은 성능을 나타냈으며, 구조물이 항복할 때까지 완전합성거동하였다. 항복 이후 웨브개구부 주변의 응력집중현상에 의해 연성이 감소하는 현상이 나타났으며, 최대내력점까지 미끄러짐의 발생은 미소하였다. 내력설계 측면에서는 안전율을 고려해 해석값의 85%를 설계내력으로 평가하는 것이 타당한 것으로 나타났다.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.