• 제목/요약/키워드: flooding and drainage

검색결과 131건 처리시간 0.024초

논 관개수, 담수 및 유출수의 용존인과 총인 농도 변화 (Variations of Dissolved and Total Phosphorus Concentrations in Irrigation, Flooding, and Drainage Water of Paddy Fields)

  • 최동호;조소현;정재운;박현규;최우정;윤광식;김영석
    • 한국물환경학회지
    • /
    • 제33권4호
    • /
    • pp.434-440
    • /
    • 2017
  • In order to understand the characteristics of phosphorus in the paddy field, this study analyzed $PO_4-P$ and T-P concentrations of irrigation water, flooding water, and runoff from 2008 to 2010. The variation of phosphorous form within hydrologic cycle around the rice paddy field was investigated using the ratio of $PO_4-P$ to TP. In addition, the correlation between pH, EC, and DO in flooding water was analyzed and the factors affecting phosphorus form in paddy field were investigated. The concentration of T-P in flooding water was high during the survey period, and the concentration of T-P in runoff was assumed to be decreased by dilution due to irrigation and rainfall. On the other hand, the ratio of $PO_4-P$ to T-P was lower in flooding water than those of irrigation water and runoff, which was interpreted to be due to the fact that the phosphorus fertilizer was applied in the paddy field but the adsorption was rapidly occurred to the paddy field by the soil. The similar proportions of $PO_4-P$ to T-P in flooding water and runoff suggest that the form of phosphorus outflowed from the paddy is influenced by the form of phosphorus in the flooding water of paddy field. In addition, DO concentration in flooding water showed negative correlation with the concentrations of $PO_4-P$ and T-P. The effort to survey frequent irrigation water quality data is required for the analysis of phosphorus behavior in the paddy water system since concentration of phosphorous and DO in irrigation water would influence rhe form of phosphorous in flooding water and subsequent runoff.

Depositional processes and environmental changes during initial flooding of an epeiric platform: Liguan Formation (Cambrian Series 2), Shandong Province, China

  • Lee, Hyun Suk;Chen, Jitao;Han, Zuozhen;Chough, Sung Kwun
    • Geosciences Journal
    • /
    • 제22권6호
    • /
    • pp.903-919
    • /
    • 2018
  • This paper focuses on the depositional processes and environmental changes during initial marine flooding recorded in the lower Cambrian succession of the North China Platform in Shandong Province, China. In order to understand imbalance of accommodation and sediment supply in the initial stage of basin-fill, a detailed analysis of sedimentary facies was made for the lowermost siliciclastic deposits of the Liguan Formation. It reveals ten siliciclastic lithofacies in three large-scale outcrops (Jinhe, Anqianzhuang, and Zhangjiapo sections). These facies are grouped into four facies associations, representing siliciclastic foreshoreshoreface (S1), siliciclastic offshore (S2), distributary mouth bars (S3), and coastal plain (S4). The siliciclastic components occur in a linear belt, emanating from a major drainage system in the northeastern part of the platform. Deposition of siliciclastic sediments was largely controlled by regional topography of the unconformable surface and shoreline configuration as well as strong effect of waves and currents. With ensued rise in sea level and decrease in siliciclastic sediment supply, carbonate sediments prevailed, filling the accommodation created by epeirogenic subsidence and sediment loading.

효과적인 도시 홍수 저감을 위한 그린-그레이 인프라 위치 설정에 관한 연구 (A Study on Optimized Placement of Green-Gray Infrastructure for Effective Flood Mitigation)

  • 배채영;이동근
    • 한국환경복원기술학회지
    • /
    • 제25권6호
    • /
    • pp.65-75
    • /
    • 2022
  • Urban flood management(UFM) strategy ought to consider the connections and interactions between existing and new infrastructures to manage stormwater and improve the capacity to treat water. It is also important to demonstrate strategies that can be implemented to reduce the flow at flooding sources and minimize flood risk at critical locations. Although the general theory of spatial impact is popular, modeling guidelines that can provide information for implementation in real-world plans are still lacking. Under such background, this study conducted a modeling research based on an actual target site to confirm the hypothesis that it is appropriate to install green infrastructure(GI) in the source area and to take structural protection measures in the impact area, as summarized in previous studies. The results of the study proved the hypothesis, but the results were different from the hypothesis depending on which hydrological performance indicators were targeted. This study will contribute to demonstrating the effectiveness of strategies that can be implemented to reduce the flow at flooding sources and minimize the risk of flooding in critical locations in terms of spatial planning and regeneration.

Flood analysis for agriculture area using SWMM model: case study on Sindae drainage basin

  • Inhyeok Song;Hyunuk An;Mikyoung Choi;Heesung Lim
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.799-808
    • /
    • 2023
  • Globally, abnormal climate phenomena have led to an increase in rainfall intensity, consequently causing a rise in flooding-related damages. Agricultural areas, in particular, experience significant annual losses every year due to a lack of research on flooding in these regions. This study presents a comprehensive analysis of the flood event that occurred on July 16, 2017, in the agricultural area situated in Sindaedong, Heungdeok-gu, Cheongju-si. To achieve this, the EPA (United States Environmental Protection Agency) Storm Water Management Model (SWMM) was employed to generate runoff data by rainfall information. The produced runoff data facilitated the identification of flood occurrence points, and the analysis results exhibited a strong correlation with inundation trace maps provided by the Ministry of the Interior and Safety (MOIS). The detailed output of the SWMM model enabled the extraction of time-specific runoff information at each inundation point, allowing for a detailed understanding of the inundation status in the agricultural area over different time frames. This research underscores the significance of utilizing the SWMM model to simulate inundation in agricultural areas, thereby validating the efficacy of flood alerts and risk management plans. In particular, the integration of rainfall data and the SWMM model in flood prediction methodologies is expected to enhance the formulation of preventative measures and response strategies against flood damages in agricultural areas.

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF

논의 배수물꼬의 유량에 관한 기초연구 (A Study on the Outlet Drain Discharge from Paddy Field)

  • 최진규;김현영;손재권
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.134-142
    • /
    • 1997
  • This study was performed to evaluate the drain runoff characteristics from one paddy field, and to provide the basic data required for the determination of flood discharge and unit drainage water for drainage improvement and farmland consolidation. For this purpose, under the assumption that drain discharge from paddy field was similar to outflow of reservoir, runoff model based on storage equation was applied to the experimental field, and simulated results were compared to the measured discharge at weir point. To estimate effective storage volume of paddy field with water depth, 4 regression formula were examined such as linear, exponential, power, and combined. From the observed runoff characteristics, it was shown to be 3.3~16.3${\ell}$/sec in weir discharge, 57.2~98% in runoff ratio, and relative error of simulated result was 3.0~39.4%, 8.5 ~56.0 % for peak flow and runoff ratio, respectively. Curve number by SCS method was calculated as mean value of 96.4 using measured rainfall and runoff data, it was considered relatively high because paddy field has generally flooding depth contrary to the upland watershed area.

  • PDF

SWMM과 FLUMEN을 이용한 수영.망미 저지대의 침수 분석 (Inundation Analysis of Suyoung.Mangmi Lowland Area Using SWMM and FLUMEN)

  • 강태욱;이상호;정태훈;오재호
    • 한국방재학회 논문집
    • /
    • 제10권5호
    • /
    • pp.149-158
    • /
    • 2010
  • 최근 우리나라의 강수량과 호우의 발생 일수는 증가 추세를 보이고 있다. 이에 따라 홍수 재해의 피해액도 증가하고 있다. 본 연구에서는 SWMM과 FLUMEN 모형을 이용하여 부산의 수영과 망미 지구에 대한 침수 상황을 분석하였다. 수영과 망미 지구는 1995년 이래 침수위험지구였다. 이 지역의 최근 침수는 2009년 7월 7일과 16일의 호우에 의하여 발생하였고, 본 연구에서는 16일의 침수 상황을 분석하였다. 계산의 첫 번째 단계는 SWMM을 이용하여 우수관거를 흐르는 홍수 수문 곡선을 산정하는 것이다. 관거의 용량을 초과하여 범람한 유량은 FLUMEN을 이용하여 침수 분석에 사용되었다. 침수 분석의 결과는 연구 지역의 실제 침수 상황과 비교 분석되었다. 실제 최대 침수심은 7월 16일에 1.0 m 정도일 것으로 추정된다. 그에 반해 계산 결과는 최대 침수심이 약 1.2 m에 이르러, 다소 크게 추정하고 있다. 오차의 원인은 홍수유출량 산정의 오차와 FLUMEN을 이용한 모의에서 건물의 지하층으로 유입된 수량을 적절히 반영하지 못한 것 때문으로 추정된다. 본 연구에서 침수 분석에 사용한 모형과 일련의 분석 과정은 호우에 따른 침수와 배수 능력을 검토하는 데 적용될 수 있다.

단지개발에 있어 강수량 지하침투 증대를 위한 침투시설의 도입가능성 연구 -분당신도시 사례를 중심으로- (Increasing Infiltration with Pervious Drainage facilities -The Effect of Simulation in Bun-Dang New town, Korea-)

  • 김두하;박원규;안동만
    • 한국조경학회지
    • /
    • 제25권1호
    • /
    • pp.62-72
    • /
    • 1997
  • As a site is built up, runoff increases inevitably. This results in water deficit in the site and possible downstream flooding. It may cause irreversible site ecosystem disturbance. This study examined some techniques of increasing infiltration rates in a site development. The possible effects of applying such techniques at a new town development are calculated for four types of land uses-business area, low/high density residential areas, and park area- of Bun-Dang New Town. If the higher infiltration drainage systems are introduced, there may be additional infiltration of the precipitation as much as 59.8% in business area, 74.6% in low density residential area, 51.4% in high density residential area and 32.7% in park area. This much increase of infiltration, or decrease of runoff, may improve site water balance, and thus keep the site ecosystem much healthier.

  • PDF

군장국가산단(장항지구) 호안 설계 (Design of Seawall at Jang-Hang Area)

  • 권오기;고장희;남세현;김성구
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.399-402
    • /
    • 2007
  • This project is the 1st. stage for the foreshore reclamation at Jang-Hang area and its scope is to construct a seawall as outer facilities, road adjacent to the seawall and drainage gate. for the safe protections of the facilities at the reclaimed land hereafter, we adopted the mild slope rubble mound type for the seawall structure which was excellent in interrupting the wave overtopping, as a result of numerical & hydraulic model test about alternative 4 sections. For the flooding prevention of the reclaimed land, we planned the drainage system that could make the flood water level lower than the reclaimed land level. Also, we planned the eco-friendly waterfront area with 8 nature themes through the whole seawall sections.

  • PDF

지리가중회귀모델을 이용한 도시홍수 피해지역의 지역적 공간특성 분석 (Local Analysis of the spatial characteristics of urban flooding areas using GWR)

  • 심준석;김지숙;이성호
    • 환경영향평가
    • /
    • 제23권1호
    • /
    • pp.39-50
    • /
    • 2014
  • In recent years, the frequency and scale of the natural disasters are growing rapidly due to the global climate change. In case of the urban flooding, high-density of population and infrastructure has caused the more intensive damages. In this study, we analyzed the spatial characteristics of urban flooding damage factors using GWR(Geographically Weighted Regression) for effective disaster prevention and then, classified the causes of the flood damage by spatial characteristics. The damage factors applied consists of natural variables such as the poor drainage area, the distance from the river, elevation and slope, and anthropogenic variables such as the impervious surface area, urbanized area, and infrastructure area, which are selected by literature review. This study carried out the comparative analysis between OLS(Ordinary Least Square) and GWR model for identifying spatial non-stationarity and spatial autocorrelation, and in the results, GWR model has higher explanation power than OLS model. As a result, it appears that there are some differences between each of the flood damage areas depending on the variables. We conclude that the establishment of disaster prevention plan for urban flooding area should reflect the spatial characteristics of the damaged areas. This study provides an improved understandings of the causes of urban flood damages, which can be diverse according to their own spatial characteristics.