• Title/Summary/Keyword: flood water level

Search Result 589, Processing Time 0.032 seconds

Flood Control Operation Model of Reservoir Using CSUDP (CSUDP를 이용한 홍수기 댐운영)

  • Lim, Kwang-Suop;Shim, Kyu-Cheoul;Hwang, Yeon-Sang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.918-922
    • /
    • 2006
  • The purpose of this study is development of operation model for flood control of multi-reservoir in river basin, which can provide the best decision of reservoir release in timely and appropriately manner using CSUDP. For verification and validation of the developed system, the Gum River Basin was selected, which has 82 rainfall gauging stations, 28 water level gauging and 2 multi-purpose reservoirs which can control flood. There was a successful simulation of the developed model and system, using the real-time data from the Han River Basin Flood Forecast Center. Specially, case study for '1995 flood was performed.

  • PDF

Numerical Analysis of Hydrograph Determination for Cohesive Soil Levee (조립토 하천제방의 수위파형결정에 관한 수치해석적 연구)

  • Kim, Jin-Man;Kim, Ji-Sung;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.81-92
    • /
    • 2014
  • The integrity evaluation of river levee includes slope stability evaluation of riverside land and protected low-land, and safety of piping with respect to critical gradient and critical velocity based on related regulations, such as Design Criteria Rivers Commentary (2009), Structural Design Criteria Based Commentary (2009). The design hydro-graph is the most important design input factor for the integrity evaluation; it can be inaccurate due to the absence of its decision methods suggested by the national level. The authors in this paper evaluated numerical analytic levee integrity for piping and slope stability by changing each design hydro-graph, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency for Mun-san-jae on Nak-dong River. Finally, the authors suggested that the levee integrity of piping and slope stability are very sensitive to the changes of increasing time of ordinary water level by 57 hours and lasting time of the flood water level by 53 hours, respectively, for Mun-san-jae.

Securement of Upland Irrigation Water in Small Dams through Periodical Management of Storage Level (기간별 저수 관리를 통한 소규모 댐의 밭 관개용수 확보)

  • Kim, Sun-Joo;Lee, Joo-Yong;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.3-12
    • /
    • 2005
  • The objective of this study is securement of upland irrigation water using storage level management of small dams. However, it is not new development of water resources but securement of water using storage level management of existing dam. This study has enhanced the water utilization coefficient of dam, after extra available water had been calculated by application of periodical management storage level and this water is used to other water like the upland irrigation water demand. As the result of application, it can secure extra available water except the water requirement. Minimum extra available water except flood is about $20,000,000\;m^3$ and crop irrigation water demand of 10yr frequency is about $2,033,000\;m^3$ in Seongju. The utilization of crop irrigation water can be possible. And extra available water is about $3,102,000\;m^3$ in 2000, $1,959,000\;m^3$ in 2001 except flood period and crop irrigation water demand of 10yr frequency is about $2,272,000\;m^3$ in Donghwa. It is judged that extra available water cannot be used to crop irrigation water during the dry season in Dongwha. Consequently, when management storage level is determined and more efficient use of water is gotten like this study, water utilization coefficient will be enhanced.

Development of Storage Management Method for Effective Operation of Small Dams (소규모 댐의 효과적 운영을 위한 저수관리 기법 개발)

  • Kim Phil-Shik;Kim Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Large dams are managed with operation standard and flood forecasting systems, while small dams do not have management method generally. Shortage of water resources and natural disasters due to drought and flood raised public concerns for management of small dams. Most of small dams are irrigation dams, which need diversified water uses. However, the lack of systematic management of small dams have caused serious water wastage and increased natural disasters. Storage management method and system were developed to solve these problems in small dams. The system was applied to Seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method can bring additional available water, even in the same conditions of the water demand and the supply conditions of watershed. It can improve the flood control capacity and water utilization efficiency by' the flexible operation of storage space.

Analysis on Flood Control Effect of Siphon Spillway by Reservoir Routing (저수지 추적을 통한 사이펀 여수로의 홍수조절 효과 분석)

  • Ko, Suhyeon;Kim, Jaeyoung;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.55-63
    • /
    • 2013
  • Agricultural small dam reservoirs in Korea are vulnerable to flooding because of insufficient flood control capacity and deterioration such that reservoir water level is likely to rise rapidly and a large amount of water release quickly to downstream without flood warning. In this study, we performed hydrologic analysis to estimate design flood(200 years return period ${\times}1.2$) and also evaluated the effect of siphon spillway as a structural countermeasure for flood control and mitigation by applying reservoir routing to the Jipyeong reservoir, located in Sangju, Korea. The results show that the design flood was calculated at $284.3m^3/s$, and water level and water release decreased by 40cm and $91m^3/s$, respectively.

Analysis of the urban flood pattern using rainfall data and measurement flood data (강우사상과 침수 실측자료를 이용한 도시침수 양상 관계분석)

  • Moon, Hye Jin;Cho, Jae Woong;Kang, Ho Seon;Lee, Han Seung;Hwang, Jeong Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.95-95
    • /
    • 2020
  • Urban flooding occurs in the form of internal-water inundation on roads and lowlands due to heavy rainfall. Unlike in the case of rivers, inundation in urban areas there is lacking in research on predicting and warning through measurement data. In order to analyze urban flood patterns and prevent damage, it is necessary to analyze flooding measurement data for various rainfalls. In this study, the pattern of urban flooding caused by rainfall was analyzed by utilizing the urban flooding measuring sensor, which is being test-run in the flood prone zone for urban flooding management. For analysis, 2019 rainfall data, surface water depth data, and water level data of a street inlet (storm water pipeline) were used. The analysis showed that the amount of rainfall that causes flooding in the target area was identified, and the timing of inundation varies depending on the rainfall pattern. The results of the analysis can be used as verification data for the urban inundation limit rainfall under development. In addition, by using rainfall intensity and rainfall patterns that affect the flooding, it can be used as data for establishing rainfall criteria of urban flooding and predicting that may occur in the future.

  • PDF

Investigation and Complementary Measures Establishment for Flood on Tidal Reclaimed Paddy Fields (간척지 논 침수 원인 조사와 방재 대책 수립)

  • Jeong, Ju-Hong;Yoon, Kwang-Sik;Choi, Soo-Myung;Yoon,, Suk-Gun;Go, Young-Bae;Kim, Young-Taek
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 2010
  • Tidal land reclamation provided water resources and land for agriculture and contributed stable crop production. However, climate change by global warming disrupts the hydrologic circulatory system of the earth resulting in sea level rise and more frequent flood for reclaimed arable land. Recently, Suyu reclaimed paddy field in Jindo-gun experienced prolonged inundation after heavy rainfall and there is a growing risk of flood damage. Onsite survey and flood analysis using GATE_Pro model of Korea Rural Corporation were conducted to investigate causes of flooding. To perform the analysis, input data such as inflow hydrograph, the lowest elevation of paddy field, neap tide level, management level of Gunnae estuary lake at the time of the flood were collected. Flood analysis confirmed that current drainage facilities are not enough to prevent 20year return period flood. The result of analysis showed flooding more than 24hours. Therefore, flood mitigation alternatives such as sluice gate expansion, installation drainage pumping station, refill paddy land, and catch canal were studied. Replacing drainage culvert of Suyu dike to sluice gate and installing drainage pumping station at the Gunne lake were identified as an effective flood control measures. Furthermore, TM/TC (SCADA) system and expert for gate management are required for the better management of drainage for estuary dam and flood mitigation.

  • PDF

A Development of Inflow Forecasting Models for Multi-Purpose Reservior (다목적 저수지 유입량의 예측모형)

  • Sim, Sun-Bo;Kim, Man-Sik;Han, Jae-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.411-418
    • /
    • 1992
  • The purpose of this study is to develop dynamic-stochastic models that can forecast the inflow into reservoir during low/drought periods and flood periods. For the formulation of the models, the discrete transfer function is utilized to construct the deterministic characteristics, and the ARIMA model is utilized to construct the stochastic characteristics of residuals. The stochastic variations and structures of time series on hydrological data are examined by employing the auto/cross covariance function and auto/cross correlation function. Also, general modeling processes and forecasting method are used the model building methods of Box and Jenkins. For the verifications and applications of the developed models, the Chungju multi-purpose reservoir which is located in the South Han river systems is selected. Input data required are the current and past reservoir inflow and Yungchun water levels. In order to transform the water level at Yungchon into streamflows, the water level-streamflows rating curves at low/drought periods and flood periods are estimated. The models are calibrated with the flood periods of 1988 and 1989 and hourly data for 1990 flood are analyzed. Also, for the low/drought periods, daily data of 1988 and 1989 are calibrated, and daily data for 1989 are analyzed.

  • PDF

Unsteady Flow Analysis by the Looped Network Channel Model (폐합형수계 모형에 의한 부정류 해석)

  • Park, Bong-Jin;Lee, Hwan-Ki;Jung, Kwan-Sue
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.129-138
    • /
    • 1996
  • Loopnet model was developed to simulate unsteady flow in the looped network channel, considering change of the time and space. In this study, the looped solution algorithm was derived and the accuracy and stability of the model was tested. The Gulpo river system was used to calculate the flood water levels considering the hydraulic structures, tidal effect and inflow hydrographs. The result of the simulation showed that the accuracy and stability of this model was reliable. The change of flood water level of the Gulpo River system and the spillway section were not greatly affected by the operation water level of the navigation channel. But this analysis showed that roughness was one of the very important physical factor in changing flood water level.

  • PDF

Highway flood hazard mapping in Thailand using the Multi Criteria Analysis based the Analytic Hierarchy Process

  • Budhakooncharoen, Saisunee;Mahadhamrongchai, Wichien;Sukolratana, Jiraroth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.236-236
    • /
    • 2015
  • Flood is one of the major natural disasters affecting millions of people. Thailand also, frequently faces with this type of disaster. Especially, 2011 mega flood in Central Thailand, inundated highway severely attributed to the failure of national economic and risk to life. Lesson learned from such an extreme event caused flood monitoring and warning becomes one of the sound mitigations. The highway flood hazard mapping accomplished in this research is one of the strategies. This is due to highway flood is the potential risk to life and limb, and potential damage to property. Monitoring and warning therefore help reducing live and property losses. In this study, degree of highway flood hazard was assessed by weighting factors for each cause of the highway flood using Multi Criteria Analysis (MCA) based Analytic Hierarchy Process (AHP). These weighting factors are the essential information to classify the degree of highway flood hazard to enable pinpoint on flood monitoring and flood warning in hazard areas. The highway flood causes were then investigated. It was found that three major factors influence to the highway flood are namely the highway characteristics, the hydrological characteristics and the land topography characteristics. The weight of importance for each cause of the highway flood in the whole country was assessed by weighting 3 major factors influence to the highway flood. According to the result of MCA analysis, the highway, the hydrological and the land topography characteristics were respectively weighted as 35, 35 and 30 percent influence to the cause of highway flood. These weighting factors were further utilized to classify the degree of highway flood hazard. The Weight Linear Combination (WLC) method was used to compute the total score of all highways according to each factor. This score was later used to categorize highway flood as high, moderate and low degree of hazard levels. Highway flood hazard map accomplished in this research study is applicable to serve as the handy tool for highway flood warning. However, to complete the whole warning process, flood water level monitoring system for example the camera gauge should be installed in the hazard highway. This is expected to serve as a simple flood monitor as part of the warning system during such extreme or critical event.

  • PDF