• Title/Summary/Keyword: flood simulation

Search Result 586, Processing Time 0.028 seconds

Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments(II) (LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정(II))

  • 맹승진;이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.33-44
    • /
    • 2003
  • This study was conducted to estimate the design flood by the determination of best fitting order for LH-moments of the annual maximum series at fifteen watersheds. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized Extreme Value (GEV) in the first report of this project. Parameters of GEV distribution and flood flows of return period n years were derived by the methods of L, L1, L2, L3 and L4-moments. Frequency analysis of flood flow data generated by Monte Carlo simulation was performed by the methods of L, L1, L2, L3 and L4-moments using GEV distribution. Relative Root Mean Square Error. (RRMSE), Relative Bias (RBIAS) and Relative Efficiency (RE.) using methods of L, Ll , L2, L3 and L4-moments for GEV distribution were computed and compared with those resulting from Monte Carlo simulation. At almost all of the watersheds, the more the order of LH-moments and the return periods increased, the more RE became, while the less RRMSE and RBIAS became. The Absolute Relative Reduction (ARR) for the design flood was computed. The more the order of LH-moments increased, the less ARR of all applied watershed became It was confirmed that confidence efficiency of estimated design flood was increased as the order of LH-moments increased. Consequently, design floods for the appled watersheds were derived by the methods of L3 and L4-moments among LH-moments in view of high confidence efficiency.

Effects on Conservation and Flood Control Systems According In Normal Water Level Change from Daechung Multi-Purpose Reservoir (대청 다목적댐의 상시만수위 변경에 따른 이수 및 치수 영향 검토)

  • Yi, Jae-Eung;Kwon, Dong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.1-10
    • /
    • 2007
  • Reallocation procedure of multipurpose reservoir storage capacity between flood control and conservation is presented as an alternative to secure more water resources. Storage reallocation is an adaptive management mechanism for converting existing normal pool level of reservoirs to more beneficial uses without requirement for physical alteration. This study is intended to develop a reservoir storage reallocation methodology that allows increased water supply storage without minimizing adverse impacts on flood control. The methodology consists of flood control reservoir simulation for inflows with various return periods, flow routing from reservoir to a potential damage site, analyzing river carrying capacity, and reservoir yields estimation for reallocated storages. For the flood control model, a simulation model called Rigid ROM(Reservoir Operation Method) and HEC-5 are used. The approach is illustrated by applying it to two reservoirs system in Geum River basin. Especially with and without new project conditions are considered to analyze trade-offs between competing objectives.

An Optimal Operation of Multi-Reservoirs for Flood Control by Incremental DP (Incremental DP에 의한 홍수시 댐군의 연계운영)

  • Lee, Jae-Hyeong;Lee, Gil-Seong;Jeong, Dong-Guk
    • Water for future
    • /
    • v.25 no.2
    • /
    • pp.47-60
    • /
    • 1992
  • An optimal operation model for flood control of multi-reservoirs, Hwacheon and Soyanggang, located in the north Han River basin is developed by using the Incremental DP. The objective function is to minimize the peak flow at the confluence point, of Euam dam, and the hydraulic and hydrologic constraints are established by considering the related laws as to the operation of dam in flood season, each reservoir and channel characteristics. In particular, the final elevations of each reservoir are induced to the conservation pool level in order to prepare for the secondary flood. In addition, the results of this model, simulation results and the single reservoir operation by DP are compared in terms of control and utility efficiencies, and also the peak flows at the confluence point for floods with various return periods are compared with the results of simulation suing feedback control. as the results, the control and utility effciencies are more or less low in contrast with the results of simulation and the single reservoir operation by DP, and the peak flows at confluence point are high because of terminal condition of reservoir storage.

  • PDF

An Integrated Flood Simulation System for Upstream and Downstream of the Agricultural Reservoir Watershed (농촌 유역 저수지 상·하류 통합 홍수 모의 시스템 구축 및 적용)

  • Kwak, Jihye;Kim, Jihye;Lee, Hyunji;Lee, Junhyuk;Cho, Jaepil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • To utilize the hydraulic and hydrological models when simulating floods in agricultural watersheds, it is necessary to consider agricultural reservoirs, farmland, and farmland drainage system, which are characteristics of agricultural watersheds. However, most of them are developed individually by different researchers, also, each model has a different simulation scope, so it is hard to use them integrally. As a result, there is a need to link each hydraulic and hydrological model. Therefore, this study established an integrated flood simulation system for the comprehensive flood simulation of agricultural reservoir watersheds. The system can be applied easily to various watersheds because historical weather data and the SSP (Shared Socio-economic Pathways) climate change scenario database of ninety weather stations were built-in. Individual hydraulic and hydrological models were coded and coupled through Python. The system consists of multiplicative random cascade model, Clark unit hydrograph model, frequency analysis model, HEC-5 (Hydrologic Engineering Center-5), HEC-RAS (Hydrologic Engineering Center-River Analysis System), and farmland drainage simulation model. In the case of external models with limitations in conceptualization, such as HEC-5 and HEC-RAS, the python interpreter approaches the operating system and gives commands to run the models. All models except two are built based on the logical concept.

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF

Estimation of Flash Flood Guidance considering Uncertainty of Rainfall-Runoff Model (강우-유출 모형의 불확실성을 고려한 돌발홍수기준)

  • Lee, Keon-Haeng;Kim, Hung-Soo;Kim, Soo-Jun;Kim, Byung-Sik
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.155-163
    • /
    • 2010
  • The flash flood is characterized as flood leading to damage by heavy rainfall occurred in steep slope and impervious area with short duration. Flash flood occurs when rainfall exceeds Flash Flood Guidance(FFG). So, the accurate estimation of FFG will be helpful in flash flood forecasting and warning system. Say, if we can reduce the uncertainty of rainfall-runoff relationship, FFG can be estimated more accurately. However, since the rainfall-runoff models have their own parameter characteristics, the uncertainty of FFG will depend upon the selection of rainfall-runoff model. This study used four rainfall-runoff models of HEC-HMS model, Storage Function model, SSARR model and TANK model for the estimation of models' uncertainties by using Monte Carlo simulation. Then, we derived the confidence limits of rainfall-runoff relationship by four models on 95%-confidence level.

Assessing the capability of HEC-RAS coupled 1D-2D model through comparison with 2-dimensional flood models

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.158-158
    • /
    • 2019
  • Recent studies show the possibility of more frequent extreme events as a result of the changing climate. These weather extremes, such as excessive rainfall, result to debris flow, river overflow and urban flooding, which post a substantial threat to the community. Therefore, an effective flood model is a crucial tool in flood disaster mitigation. In recent years, a number of flood models has been established; however, the major challenge in developing effective and accurate inundation models is the inconvenience of running multiple models for separate conditions. Among the solutions in recent researches is the development of the combined 1D-2D flood modeling. The coupled 1D-2D river flood modeling allows channel flows to be represented in 1D and the overbank flow to be modeled over two-dimension. To test the efficiency of this approach, this research aims to assess the capability of HEC-RAS model's implementation of the combined 1D-2D hydraulic simulation of river overflow inundation, and compare with the results of GERIS and FLUMENS 2D flood model. Results show similar output to the flood models that had used different methods. This proves the applicability of the HEC-RAS 1D-2D coupling method as a powerful tool in simulating accurate inundation for flood events.

  • PDF

Numerical Simulation of Flood Inundation with Quadtree Grid (사면구조 격자를 이용한 홍수범람 모의)

  • Kim, Jong-Ho;Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.45-52
    • /
    • 2007
  • In this study, the flood inundations of the Nam River catchment running through the Uiryeong and Haman regions have been simulated using the numerical model based on quadtree grids. The nonlinear Saint Venant equation is employed as the governing equation for a numerical model in this study. The governing equations are discretized explicitly with a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. Results from this study are compared with those of established numerical models such as the HEC-RAS and the FLUMEN. A numerical model is also simulated according to the frequency variations of flood event. Obtained numerical results show good agreements with them of commercial models. It is found from this study that the flood inundations in the studied area can be occurred at a 500 year frequency event.

Modeling System for Unsteady Flow Simulations in Drainage Channel Networks of Paddy Field Districts (논 지구의 배수로 부정류 흐름 모의를 위한 모델링 시스템)

  • Kang, Min Goo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • A modeling system is constructed by integrating an one-dimensional unsteady flow simulation model and a hydrologic model to simulate flood flows in drainage channel networks of paddy field districts. The modeling system's applicability is validated by simulating flood discharges from a paddy field district, which consists of nine paddy fields and one drainage channel. The simulation results are in good agreement with the observed. Particularly, in the verification stage, the relative errors of peak flows and peak depths between the observed and simulated hydrographs range 8.96 to 10.26 % and -10.26 to 2.97 %, respectively. The modeling system's capability is compared with that of a water balance equation-based model; it is revealed that the modeling system's accuracy is superior to the other model. In addition, the simulations of flood discharges from large-sized paddy fields through drainage channels show that the flood discharge patterns are affected by drainage outlet management for paddy fields and physical characteristics of the drainage channels. Finally, it is concluded that to efficiently design drainage channel networks, it is necessary to analyze the results from simulating flood discharges of the drainage channel networks according to their physical characteristics and connectivities.

Flood Runoff Simulation using Radar Rainfall and Distributed Hydrologic Model in Un-Gauged Basin : Imjin River Basin (레이더 강우와 분포형 수문모형을 이용한 미계측 유역의 홍수 유출모의: 임진강 유역)

  • Kim, Byung-Sik;Bae, Young-Hye;Park, Jung-Sool;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.52-67
    • /
    • 2008
  • Recently, frequent occurrence of flash floods caused by climactic change has necessitated prompt and quantitative prediction of precipitation. In particular, the usability of rainfall radar that can carry out real-time observation and prediction of precipitation behavior has increased. Moreover, the use of distributed hydrological model that enables grid level analysis has increased for an efficient use of rainfall radar that provides grid data at 1km resolution. The use of distributed hydrologic model necessitates grid-type spatial data about target basins; to enhance reliability of flood runoff simulation, the use of visible and precise data is necessary. In this paper, physically based $Vflo^{TM}$ model and ModClark, a quasi-distributed hydrological model, were used to carry out flood runoff simulation and comparison of simulation results with data from Imjin River Basin, two-third of which is ungauged. The spatial scope of this study was divided into the whole Imjin River basin area, which includes ungauged area, and Imjin River basin area in South Korea for which relatively accurate and visible data are available. Peak flow and lag time outputs from the two simulations of each region were compared to analyze the impact of uncertainty in topographical parameters and soil parameters on flood runoff simulation and to propose effective methods for flood runoff simulation in ungauged regions.

  • PDF