• Title/Summary/Keyword: flood pressure

Search Result 85, Processing Time 0.02 seconds

Storm Surge Caused by the Typhoon in Kwangyang Port (광양항에서의 폭풍해일 검토)

  • Kim, Hyeon-Seong;Im, Hyo-Hyuc;Han, Dong-Hoon;Kim, Pyeong-Joong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.205-206
    • /
    • 2006
  • The surges caused by the typhoon of Korea are analysed in Kwangyang Bay. The deviations of the high water level were $74{\sim}185cm$ and the maximum deviations of the water level (maximum surges) were $151{\sim}240cm$ in Kwangyang Bay during the typhoon. The major parameters of the maximum deviations of the water level are as follows : Analysis shows that the pressure drop increased the sea level by $43{\sim}59cm$, the flood of the Sumjin River by $4{\sim}5cm$ and the external surge propagation and wind setup by $97{\sim}192cm$.

  • PDF

Development of A New Facility for Moving Model Test (한국형 터널 미기압파 저감 시험기 개발)

  • 김동현;양신추;오일근
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.146-154
    • /
    • 1999
  • The test facility of the 1/60-scale models for the train-tunnel interactions was recently developed to investigate the effects of entry portal shapes, flood shapes and air-shafts for reducing the micro-pressure waves radiating to the surroundings of the tunnel exits by KRRI in Korea. The launching system of train model was chosen as air-gun type. In present test rig, after train model is launched, the blast wave by the driver did not enter to inside of the tunnel model. The train model is guided on the one-wire system from air-gun driver to the brake parts of test facility end. Some cases of the experiments were compared with numerical simulations to prove the test facility.

  • PDF

Analysis on flood vulnerability using PSR index (PSR 지수를 활용한 유역별 홍수취약도 분석)

  • Kim, Youngil;Seo, Seung Beom;Jee, Hee Won;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.419-419
    • /
    • 2018
  • 기후변화로 인한 홍수피해의 빈도와 규모가 증가함에 따라 미래 홍수취약성은 갈수록 증가할 것으로 전망된다. 이를 대비하기 위해서는 지역별 기후변화를 고려한 홍수취약성 평가를 통해 적절한 적응 정책을 수립하여야 한다. 본 연구에서는 지역별 홍수취약성을 평가하기 위해 홍수취약성지수(Flood Vulnerability Index, FVI)를 새롭게 선정하였다. FVI는 3가지 구성요소의 결합으로 산정되며, 피해의 원인이 되는 압력지수(Pressure Index), 물리적 피해 현황을 나타내는 현상지수(State Index), 대응할 수 있는 능력인 대책지수(Response Index)의 함수로 나타낸다. 압력지수는 기후, 유역, 사회특성에 따라 세부지표를 구분하였고, 현상지수는 홍수피해 비율, 대책지수는 기술 및 사회적 특성을 기준으로 하였다. 따라서, 압력지수 및 현상지수가 클수록 홍수피해에 취약함을 나타내고, 대책지수가 클수록 취약성이 저감되게 된다. 연구 대상 지역은 최근 집중호우로 인해 많은 홍수피해가 발생한 금강유역을 선정하였고, 과거 홍수 피해액 자료를 사용하여 선정된 지수의 적용성을 검토하였다. 또한, 기후변화를 고려하기 위해 27개의 GCMs (Global Climate Models) 중 홍수를 가장 잘 설명하는 5개의 대표시나리오와 2개의 배출시나리오(RCP4.5, RCP8.5)를 사용하였으며, 과거(2010년대) 및 2030년대, 2050년대, 2080년대의 홍수취약성지수를 산정하여 결과를 분석하였다. Spearmans's rank correlation coefficient를 사용하여 과거 10년간 실제 홍수 피해액의 평균값과 FVI를 비교한 결과 선정된 지수가 홍수피해를 적절히 설명하는 것으로 나타났다. 대표시나리오를 사용한 미래 홍수취약성 분석 결과, 용담댐 유역에서 홍수취약성이 증가하는 것으로 나타났으며 지역별 상대적 취약성전망 결과는 대부분 과거와 비슷하였다.

  • PDF

A numerical study of pillar reinforcing effect in underground cavern underneath existing structures (지하공간하부 지하저류공동에서의 필라 보강효과에 관한 수치해석적 연구)

  • Seo, Hyung-Joon;Lee, Kang-Hyun;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.453-467
    • /
    • 2012
  • Usage of underground space is increasing at metropolitan city. More than 90% of flood damages have occurred at downtown of metropolitan cities. In order to prevent and/or minimize the flood-induced damage, an underground rainwater detention cavern was proposed to be built underneath existing structures. As for underground caverns to be built for flood control, multi-caverns will be mostly adopted rather than one giant cavern because of stability problem. Because of the stress concentration occurring in the pillars between two adjacent caverns, the pillar-stability is the Achilles' heel in multi-caverns. So, a new pillar-reinforcing technology was proposed in this paper for securing the pillar-stability. In the new pillar-reinforcing technology, reinforced materials which are composed of a steel bar and PC strands are used by applying pressurized grouting, and then, by applying the pre-stress to the PC strands and anchor body. Therefore, this new technology has an advantage of utilizing most of the strength that the in-situ ground can exert, and not much relying on the pre-cast concrete structure. The main effect of the pressurized grouting is the increase of the ground strength and more importantly the decrease of stress concentration in the pillar; that of the pre-stress is the increase of the ground strength due to the increase of the internal pressure. In this paper, ground reinforcing effects were verified the stress change in pillar is obtained by numerical analysis at each construction stage. From these results, the effects of pressurized grouting and pre-stress are verified.

Physical Modeling of Horizontal Force on the Inland Vertical Structure by Tsunami-like Waves (육상의 직립구조물에 미치는 지진 해일에 의한 수평 파력 및 파압에 대한 수리모형실험)

  • Park, Hyongsu;Cox, Daniel;Shin, Sungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.363-368
    • /
    • 2017
  • The tsunami flood the coastal cities and damage the land structures. The study on wave pressure and force on land structures is one of the important factors in designing the stability of inland structures. In this study, two - dimensional wave flume tests on the horizontal wave force and pressure of tsunamis on a simplified box-type structure was conducted. Vertical distribution and wave power of horizontal wave pressure over time were measured by pressure sensors and force transducer. Also, those were measured from the different wave breaking types. The vertical distribution of horizontal wave pressure was uniform at the moment when the horizontal wave force to the structure was maximum under the breaking wave condition. A surf similarity parameter was employed in order to figure out the relationship between the maximum horizontal wave force on the structure as a function of various incident wave conditions. As a result, the non - dimensionalized horizontal wave force tends to decrease exponentially as the surf similarity parameter increases.

Long term noise exposure of steel mill workers, hearing loss and blood pressure (제강소 장기근무자의 소음 노출 및 청력손실과 혈압과의 관계에 관한 연구)

  • Ha, Myung-Wha;Kim, Doo-Hie
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.4 s.36
    • /
    • pp.496-506
    • /
    • 1991
  • A cross-sectional study was conducted to investigate the effect of long term noise exposure on blood pressure among steel mill workers. The workers participated in periodic medical examinations performed from August 27 to September 6 in 1990. Examined were 1,034 workers with high-level noise exposure(average $91.8{\pm}5.2dB(A)$) and 390 workers with low-level noise exposure(average $75.2{\pm}4.6dB(A)$). No significant difference was found in systolic or diastolic flood pressure between the two exposure groups. Prevalence of hypertension (${\geq}160mmHg\;systolic\;or{\geq}100mmHg\;diastolic$) was higher in a younger age group (${\leq}40$ years old) of high-level noise exposure than of low-level noise exposure. However, the difference was not statistically significant. Furthermore, in younger ages, prevalence of hypertension appeared to be higher in the hearing loss group (${\geq}25dB\;at\;1000Hz\;or{\geq}40dB$ at 4000Hz in at least one ear) than in the normal hearing group. From multiple regression analysis, hearing loss, body mass index, age, alcohol and family history of hypertension were proven to be predictors of diastolic blood Pressure (p<0.02). When regression was performed for each age group, hearing loss was a strong predictor of diastolic pressure in the younger age group (p<0.01).

  • PDF

A Study on the Wall and Reservoir at the Valley Part of Stone Fortress - Focused on the Fortress of $Geoyeol-seong$ and $Seongsan-seong$ - (석축 산성의 계곡부 체성과 못(池)에 관한 연구 - 거창 거열성과 함안 성산산성을 중심으로 -)

  • Kwon, Soon-Kang;Lee, Ho-Yeol;Park, Un-Jung
    • Journal of architectural history
    • /
    • v.20 no.3
    • /
    • pp.7-22
    • /
    • 2011
  • With the accumulations of outcomes from archaeological excavations of mountain fortress of three kingdoms period, there have been studies about time-periodic territory range of mountain fortress, difference in the way(method) of construction, defence system and so on from various points of view. This is an empirical study on the construction method of the valley part of stone fortress. First of all, it is required to secure large quantity of fresh water for those who lived at mountain fortress. Especially when builders of fortress construct a fortification at the valley part of stone fortress, in advance they must sufficiently consider several options including the establishment of sustainable water resources. First, when it comes to build a fortification on a ridge[or a slope] of a mountain, you have only to consider a vertical stress. However, when it comes to build a fortification at the valley part of a mountain, You must have more sufficient preparations for the constructing process. Because there are not only a vertical stress but also a horizontal pressure simultaneously. Second, a fortification of mountain fortress built by using unit building stone is a structure of masonry construction like brick construction, and the valley part of it is where the construction of the fortification begins. Third, when it comes to build a fortification at the valley part of a mountain, it seems that they use a temporary method such as coffer dam in oder to prevent the collapse of the fortification due to heavy rain. Furthermore, in response to a horizontal pressure a fortification is built by the way of its plane make an arch, or by piling up the soil with the plate method(類似版築) and earthen wall harder method(敷葉) they increase cross-sectional area of the fortification and its cutoff capacity. In front direction they put the reservoir facility for the fear that the hydraulic pressure and earth pressure are directly transmitted to the fortification. The process of constructing the fortification at the valley part of a mountain is done in the same oder as follows; leveling of ground(整地) ${\Rightarrow}$ construction of coffer dam ${\Rightarrow}$ construction of the fortification between the both banks of the valley ${\Rightarrow}$ construction of the fortification at bottom part of spill way(餘水路) between the both banks of the valley ${\Rightarrow}$ construction of spill way(餘水路) & reservoir facility ${\Rightarrow}$ construction of the fortification at upper part of spill way between the both banks of the valley. Coffer dam facility seems to be not only the protection device on occasion of flood but also an important criterion to measure the proper height of spill way or tailrace(放水路). This study has a meaningful significance in that it empirically examines the method of reduction of the horizontal pressure which the fortification at the valley part of a mountain takes, the date the construction was done, and wether the changes in climate such as heavy rainfall influence the process of construction.

A Study on Evaluation for Hydraulic and Hydrologic Safety of an Existing Dam with Morning Glory Spillway (나팔형 여수로를 가진 기존댐의 수리·수문학적 안전성평가에 관한 연구)

  • Shin, Eun-Woo;Kim, Kyung-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.269-278
    • /
    • 2004
  • In this study, hydraulic and hydrologic safety of an existing dam with morning glory spillway was evaluated and the problems were derived in order to control extreme floods efficiently. For design flood(520cms and EL. 170.3m), the spillway was turned out to have no problem for discharge and negative pressure in vertical transition. However, the critical point for discharge starts with EL. 170.7m which transits weir flow condition to orifice flow condition and there may be negative pressure in weir crest. While maximum water level can not be greater than EL. 170.5m including freeboard according to the dam design criteria, the maximum water level based on reservoir routing was turned out to be EL. 172.46m, and fundamental measures should be requested and planned.

Behavior of double deck tunnel due to feature change and variation of ground water table (다목적 복층터널의 기능전환과 지하수위 변화에 따른 거동분석)

  • Park, No-Hyeon;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.581-591
    • /
    • 2016
  • Several attempts to construct multi-purpose tunnel for both road and waterway have been made. The multi-purpose tunnel is mainly used as a road tunnel, however it is transferred to waterway to control flood during rainy season. The planning of the multi-purpose tunnel is recognized as cost-effective way of infrastructure construction. In case of the multi-purpose tunnel constructed beneath groundwater table, seasonal fluctuation of groundwater table and repeated flow in the tunnel may cause long-term deterioration of the tunnel system. In this study, the behavior of multi-purpose tunnel in view of groundwater table or flow in the tunnel is investigated using model test and numerical modeling method. The results have shown that rising of groundwater table caused buoyant force to the tunnel and the fluctuation of rainwater in the tunnel generated loosening of surrounding ground. It is recommended to evaluate the effect of the long-term water pressure variation in the design of a multi-purpose tunnel.

An experimental study on the discharge characteristics of underflow type floating vertical lift gate at free-flow condition (부력식 연직수문의 자유흐름 상태에서 하단방류 특성에 관한 실험적 연구)

  • Han, Il Yeong;Choi, Heung Sik;Lee, Ji Haeng;Ra, Sung Min
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.405-415
    • /
    • 2018
  • Hydraulic variables such as discharge coefficient, gate opening, and upstream water depth are required to calculate the discharge of vertical lift gate. It is very important for a precise gate design, because it may affect the rest, to predict the behavior of gate opening during operation. In this study, an equation by which gate opening could be predicted with any upstream water depths was derived from the relation between the calculated value from buoyancy theory and measured one from experiment for a floating gate model. Downpull force was the reason for the differences between the calculated and the measured and it was verified using pressure coefficient. Also, the relation of discharge coefficient with gate opening ratios was derived. The derived relations were used for flood routing and it was realized that downpull force effect should be fully taken into account during gate design.