• Title/Summary/Keyword: flood management

Search Result 813, Processing Time 0.03 seconds

Flood Response Disaster Prevention Facility Simulator Design and Prototype Development Using Spill and Inundation Model (유출·침수모델을 이용한 홍수대응 방재시설 시뮬레이터 설계 및 프로토타입 개발)

  • Seo, Sung Chul;Kim, Ui Hwan;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.259-266
    • /
    • 2023
  • Global climate change is increasing, and the damage and scale of localized torrential rains are increasing. Pre-flood analysis simulation results should be derived from rainfall data through rainfall forecasts to prevent flood damage. In addition, it is necessary to control the use and management of flood response disaster prevention facilities through immediate decision-making. However, methods using spills and flood models such as XPSWMM and GATE2018 are limited due to professional usability and complex analytical procedures. Prototype (flood disaster prevention facility simulator) of this study is developed by calculating rainfall (short-term and long-term) using CBD software development methods. It is also expected to construct administrator and user-centric interfaces and provide GIS and visible data (graphs, charts, etc.).

Estimation of the Parameters for the Clark Model through the Rainfall-Runoff Events (강우 유출사상을 통한 Clark 모형의 매개변수 평가)

  • Ahn, Tae-Jin;Baek, Chun-Woo;Kim, Min-Hyuk;Choi, Kwang-Hoon;Kang, In-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.770-774
    • /
    • 2006
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage coefficient in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage coefficients based on the observed rainfall-runoff events at the four stage stations in the Hantan river basin. Model calibration is the process of adjusting model parameter values until model results match historical data. An objective function which is the percent difference between the observed and computed peak flows is available for measuring the goodness-of-fit between computed and observed hydrographs. By sensitivity analysis for the storage coefficient, it has been shown that the storage coefficients affect the peak flows. The Clark parameters adopted in the River Rectification Basic Plan have been estimated through an iterative process designed to produce a hydrograph with the peak flow.

  • PDF

The Establishment and Application of Hydraulic Channel Routing Model on the Nakdong River (I) Theory and Evaluation of Travel Time (낙동강 유역 수리학적 하도추적 모형 구축 및 적용 (I) 이론 및 도달시간 산정)

  • Lee, Eul Rae;Shin, Chul Kyun;Kim, Sang Ho
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • In this study, the hydraulic channel routing model is applied to analyze water surface elevation pattern on the Nakdong river in flood cases. The procedure to apply FLDWAV model is presented to solve the Saint-Venant Equations by using four points implicit finite differential scheme. And the flood travel time is studied for reasonable dam management. As this results, variable assumption and constraint are followed to evaluate flood travelling time by hydraulic model. A guideline of reasonable dam's decision making considering downstream effect is showed by this constructed model, and scientific hydraulic analysis is possible by it.

  • PDF

Optimization of Detention Basin at Watershed Level Scale

  • Ngo, Thi Thuy;Yazdi, Jafar;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.218-218
    • /
    • 2015
  • Urbanization and waterworks construction in natural watershed have been causing higher flood risks in lowland areas. Detention basins have become one of the most efficient fundamental instruments for storm water and environmental management at watershed scale. Nowadays, there are many studies coupled numerical methods of flood routing with optimization algorithms to investigate factors that impact on the efficiency of detention basins in flood reduction in a watershed, such as detention basin location, size, and cost and watershed characteristics. Although these couplings have been become more widespread but cumbersome computation and hydraulic data requirement still are their limitations. To tackle the procedure efforts due to numerical integration and data collection, simple approach is proposed to primarily estimate effects of detention basins. The approach basis is the linear system theory applied to the solution of hydrologic flood routing. The paper introduces an analytical method for estimating detention effects deriving by recent studies and innovatively analyses this equation on fractal perspective. Then, an optimization technique is performed by applying harmony search algorithms (HSA) to optimize efficiency of detention basins at watershed scale. The location and size of upstream detention basin are simultaneously obtained. Finally, the proposed methodology, practically applied for a real watershed in Kan river, Iran.

  • PDF

A Study on Optimized Placement of Green-Gray Infrastructure for Effective Flood Mitigation (효과적인 도시 홍수 저감을 위한 그린-그레이 인프라 위치 설정에 관한 연구)

  • Bae, Chae-Young;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • Urban flood management(UFM) strategy ought to consider the connections and interactions between existing and new infrastructures to manage stormwater and improve the capacity to treat water. It is also important to demonstrate strategies that can be implemented to reduce the flow at flooding sources and minimize flood risk at critical locations. Although the general theory of spatial impact is popular, modeling guidelines that can provide information for implementation in real-world plans are still lacking. Under such background, this study conducted a modeling research based on an actual target site to confirm the hypothesis that it is appropriate to install green infrastructure(GI) in the source area and to take structural protection measures in the impact area, as summarized in previous studies. The results of the study proved the hypothesis, but the results were different from the hypothesis depending on which hydrological performance indicators were targeted. This study will contribute to demonstrating the effectiveness of strategies that can be implemented to reduce the flow at flooding sources and minimize the risk of flooding in critical locations in terms of spatial planning and regeneration.

An Integrated Flood Simulation System for Upstream and Downstream of the Agricultural Reservoir Watershed (농촌 유역 저수지 상·하류 통합 홍수 모의 시스템 구축 및 적용)

  • Kwak, Jihye;Kim, Jihye;Lee, Hyunji;Lee, Junhyuk;Cho, Jaepil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • To utilize the hydraulic and hydrological models when simulating floods in agricultural watersheds, it is necessary to consider agricultural reservoirs, farmland, and farmland drainage system, which are characteristics of agricultural watersheds. However, most of them are developed individually by different researchers, also, each model has a different simulation scope, so it is hard to use them integrally. As a result, there is a need to link each hydraulic and hydrological model. Therefore, this study established an integrated flood simulation system for the comprehensive flood simulation of agricultural reservoir watersheds. The system can be applied easily to various watersheds because historical weather data and the SSP (Shared Socio-economic Pathways) climate change scenario database of ninety weather stations were built-in. Individual hydraulic and hydrological models were coded and coupled through Python. The system consists of multiplicative random cascade model, Clark unit hydrograph model, frequency analysis model, HEC-5 (Hydrologic Engineering Center-5), HEC-RAS (Hydrologic Engineering Center-River Analysis System), and farmland drainage simulation model. In the case of external models with limitations in conceptualization, such as HEC-5 and HEC-RAS, the python interpreter approaches the operating system and gives commands to run the models. All models except two are built based on the logical concept.

Development of a Framework of Adaptive Flood Risk Management for Sustainable Flood Management in River Basins (수계의 지속가능한 홍수관리를 위한 적응형 홍수 위험도 관리 프레임워크 개발)

  • Kang, Min-Goo;Cai, Ximing
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1520-1524
    • /
    • 2008
  • 최근 이상기후와 도시화에 의해 홍수 피해가 크게 증가하고 있으며, 기후 변화는 이에 대한 불확실성을 가중시키고 있다. 이를 저감시키기 위해서는 경제, 사회, 환경, 법 및 제도 측면을 고려하면서 홍수피해를 최소화하고, 홍수피해로부터 빠르게 회복시키기 위한 대책을 수립해야 한다. 본 연구에서는 홍수 관리와 관련된 여건들의 변화와 전문가들에 대한 설문조사 결과를 토대로 적응형 홍수 관리 프로세스를 개발하였다. 또한, 이를 시행하기 위하여 홍수관리의 목표, 목적, 원칙, 전략, 참여 등을 고려한 홍수 위험도 관리 프레임워크를 개발하였다.

  • PDF

INFLOW PREDICTION FOR DECISION SUPPORT SYSTEM OF RESERVOIR OPERATION

  • Kazumasa Ito
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.59-64
    • /
    • 2002
  • An expert system, to assist dam managers for five dams along the Saikawa River, has been developed with a primary objective of achieving swift and accurate reservoir operation decision-makings during floods. The expert system is capable of supporting on decision-makings upon establishment of flood management procedure and release/storage planning. Furthermore, an attempt was made to improve reservoir inflow prediction models for better supporting capability. As a result, accuracy on prediction of inflow up to 7 hours ahead was improved, which is important for flood management of the five dams, using neural network. The neural network inflow prediction models were developed for each types of floods caused by frontal rainfalls, snowmelt and typhoons, after extracting relevant meteorological factors for each.

  • PDF

Research on Real-time Flow Rate Measurement and Flood Forecast System Based on Radar Sensors (레이다 센서 기반 실시간 유량 측정 및 홍수 예측 시스템 연구)

  • Lee, Young-Woo;Seok, Hyuk-Jun;Jung, Kee-Heon;Na, Kuk-Jin;Lee, Seung-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.288-290
    • /
    • 2022
  • As part of the SOC digitization for smart water management and flood prevention, the government reported that automatic and remote control system for drainage facilities (180 billion won) to 57% of national rivers and established a real-time monitoring system (30 billion won). In addition, they were also planning to establish a smart dam safety management system (15 billion won) based on big data at 11 regions. Therefore, research is needed for smart water management and flood prevention system that can accurately calculate the flow rate through real-time flow rate measurement of rivers. In particular, the most important thing to improve the system implementation and accuracy is to ensure the accuracy of real-time flow rate measurements. To this end, radar sensors for measuring the flow rate of electromagnetic waves in the United States and Europe have been introduced and applied to the system in Korea, but demand for improvement of the system continues due to high price range and performance. Consequently, we would like to propose an improved flow rate measurement and flood forecast system by developing a radar sensor for measuring the electromagnetic surface current meter for real-time flow rate measurement.

  • PDF