• Title/Summary/Keyword: flood forecasting model

Search Result 218, Processing Time 0.028 seconds

Establishment of Hydraulic Model for flow Analysis of the Lower Han River (한강 하류부 흐름해석을 위한 수리학적 모형의 구축)

  • Kim, Sang-Ho;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.485-500
    • /
    • 2002
  • Hydraulic model was developed to analyze the complex flow due to channel structures, tide, and tributaries in the lower Han river and Imjin river. DWOPER-2K model which can automatically process the data transformation in the model was developed as the 1-D hydraulic routing model. Observed data in tidal zone and the recent channel geometry data were collected for hydraulic model. And the flow over the Jamsil and Singok submerged weir was analyzed properly and roughness coefficient was optimized to each regions and each discharges. By the results of verification of the model, the model developed in this study may contribute to improvement of the accuracy of flood forecasting and channel management because this model can efficiently and properly analyze the various kind of flow occurred in the region of the lower Han river and Imjin river.

Evaluation of Levee Reliability by Applying Monte Carlo Simulation (Monte Carlo 기법에 의한 하천제방의 안정성 평가)

  • Jeon, Min Woo;Kim, Ji Sung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.501-509
    • /
    • 2006
  • The safety of levee that depends on the river flood elevation has been regarded as very important keys to build up various flood prevention systems. However, deterministic methods for computation of water surface profile cannot reflect the effect of possible inaccuracies in the input parameters. The purpose of this study is to develop a methodology of uncertainty computation of design flood level based on steady flow analysis and Monte Carlo simulation. This study addresses the uncertainty of water surface elevation by Manning's coefficients, design discharges, river cross sections and boundary condition. Monte Carlo simulation with the variations of these parameters is performed to quantify the variations of water surface elevations in a river. The proposed model has been applied to the Kumho-river. The reliability analysis was performed within 38.5 km (95 sections) reach considered the variations of the above-mentioned parameters. Overtopping risks were evaluated by comparing the elevations of the flood condition with the those of the levees. The results show that there is a necessity which will raise the levee elevation between 1 cm and 56 cm at 7 sections. The model can be used for preparing flood risk maps, flood forecasting systems and establishing flood disaster mitigation plans as well as complement of conventional levee design.

Spatial Extension of Runoff Data in the Applications of a Lumped Concept Model (집중형 수문모형을 활용한 홍수유출자료 공간적 확장성 분석)

  • Kim, Nam Won;Jung, Yong;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.921-932
    • /
    • 2013
  • Runoff data availability is a substantial factor for precise flood control such as flood frequency or flood forecasting. However, runoff depths and/or peak discharges for small watersheds are rarely measured which are necessary components for hydrological analysis. To compensate for this discrepancy, a lumped concept such as a Storage Function Method (SFM) was applied for the partitioned Choongju Dam Watershed in Korea. This area was divided into 22 small watersheds for measuring the capability of spatial extension of runoff data. The chosen total number of flood events for searching parameters of SFM was 21 from 1991 to 2009. The parameters for 22 small watersheds consist of physical property based (storage coefficient: k, storage exponent: p, lag time: $T_l$) and flood event based parameters (primary runoff ratio: $f_1$, saturated rainfall: $R_{sa}$). Saturated rainfall and base flow from event based parameters were explored with respect to inflow at Choongju Dam while other parameters for each small watershed were fixed. When inflow of Choongju Dam was optimized, Youngchoon and Panwoon stations obtained average of Nash-Sutcliffe Efficiency (NSE) were 0.67 and 0.52, respectively, which are in the satisfaction condition (NSE > 0.5) for model evaluation. This result is showing the possibility of spatial data extension using a lumped concept model.

Uncertainty Analysis for the Probabilistic Flood Forecasting (확률론적 홍수예측을 위한 불확실성 분석)

  • Lee, Kyung-Tae;Kim, Young-Oh;Kang, Tae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.71-71
    • /
    • 2012
  • 현재 전 세계적으로 극한강우의 발생빈도가 점차 높아지고 있으며 홍수량 또한 강도가 커지고 있는 것이 현실이다. 하지만 과거의 홍수발생 빈도에 따라 설계된 홍수방어시설들이 점차 한계를 보이고 있으므로 이를 대비하기위한 구조적 대책뿐만 아니라 홍수피해 발생 가능지역에 사전 예경보를 시행하는 비구조적 대책마련 또한 필요하다. 기존의 홍수예측은 확정적인 하나의 유량예측값만을 제공함으로써 신속하고 편리하였지만 이에 대한 불확실성이 큰 경우 예상치 못한 큰 인적 물적 피해를 가져올 수 있다. 이처럼 확률론적 홍수예측의 필요성이 대두되어 지면서 유럽이나 미국등 선진국에서는 EFFS(European Flood Forecasting System)과 NWSRFS(National Water Service River Forecast System)같이 이미 확률론적 홍수예측에 대한 연구 및 기술개발이 활발하게 진행되어지고 있다. 하지만 홍수예측의 확률론적 접근에 있어서는 많은 불확실성들이 내포되어 있으므로 예측시스템에서 생성된 앙상블 유량예측 결과의 신뢰도 분석과 올바른 불확실성 정보의 제공이 필요하다. 본 연구는 확률론적 홍수예측 방법을 국내에 적용시켜서 기상청의 예측시스템 KLAPS(Korea Local Analysis and Prediction System), MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation), UM(Unified Model) 그리고 MOGREPS(Met Office Global Regional Ensemble Prediction System)으로부터 생성된 기상앙상블을 현재 국토해양부 홍수통제소에서 사용하고 있는 강우-유출모형인 저류함수모형(Storage Function Method)의 입력 자료로 사용한다. 확률론적 홍수예측에서 오는 불확실성을 분석하기 위해서 첫 번째로 제공되는 기상예측 시스템의 시 공간적 스케일 및 대상유역의 공간특성에 따라 어떠한 형태로 전파되어지는지를 분석하였다. 두 번째는 각각의 예측시스템들이 선행기간(Lead time)에 따라 불확실성의 특성이 어떻게 나타나게 되는지를 확인하였다. 이러한 불확실성의 특성을 정확하게 파악하게 된다면 예측에 있어서 현재 갖고 있는 문제점들로부터 개선해 나가야 할 방향을 제시해주어 향후연구에 유용하게 활용될 수 있을 것이다.

  • PDF

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

2-D Hydrodynamic Analysis using EFDC in the Nakdong River - Focused on Velocity and Arrival Time Between Weirs - (EFDC 모형을 이용한 낙동강에서의 2차원 수리해석 - 보 구간의 유속 및 도달시간 중심으로 -)

  • KIM, Beom-Jin;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.36-52
    • /
    • 2020
  • This study performed 2-D(two-dimensional) hydrodynamic analysis using EFDC in the Nakdong River. For the simulation of the flood season and non-flood season, the measured data including water level, weir outflow and tributary inflow were used, and the accuracy and applicability of the model were verified by comparing the measured water level and computed one. In addition, statistical quantitative assessment of the model performance was performed by estimating PBIAS, RSR, and RMSE for the computed water level. Then, the average velocity for each section between weirs was calculated by applying constant discharge conditions, and it was compared and verified with the measured velocity by Hydrological Survey Center. In this study, a simple method for estimating the arrival time was proposed, and it is expected that it will be practically applicable in field practices such as flood forecasting and warning.

A Stochastic Nonlinear Analysis of Daily Runoff Discharge Using Artificial Intelligence Technique (인공지능기법을 이용한 일유출량의 추계학적 비선형해석)

  • 안승섭;김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.54-66
    • /
    • 1997
  • The objectives of this study is to introduce and apply neural network theory to real hydrologic systems for stochastic nonlinear predicting of daily runoff discharge in the river catchment. Back propagation algorithm of neural network model is applied for the estimation of daily stochastic runoff discharge using historical daily rainfall and observed runoff discharge. For the fitness and efficiency analysis of models, the statistical analysis is carried out between observed discharge and predicted discharge in the chosen runoff periods. As the result of statistical analysis, method 3 which has much processing elements of input layer is more prominent model than other models(method 1, method 2) in this study.Therefore, on the basis of this study, further research activities are needed for the development of neural network algorithm for the flood prediction including real-time forecasting and for the optimal operation system of dams and so forth.

  • PDF

Analysis of the Runoff Characteristics of Small Mountain Basins Using Rainfall-Runoff Model_Danyang1gyo in Chungbuk (강우-유출모형을 활용한 소규모 산지 유역의 유출특성 분석_충북 단양1교)

  • Hyungjoon Chang;Hojin Lee;Kisoon Park;Seonggoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.31-38
    • /
    • 2023
  • In this study, runoff characteristics analysis was conducted as a basic research to establish a forecasting and warning system for flood risk areas in small mountainous basins in South Korea. The Danyang 1 Bridge basin located in Danyang-gun, Chungcheongbuk-do was selected as the study basin, and the watershed characteristic factors were calculated using Q-GIS based on the digital elevation model (DEM) of the basin. In addition, nine heavy rainfall events were selected from 2020 to 2023 using hydrometeorological data provided by the National Water Resources Management Comprehensive Information System. HEC-HMS rainfall-runoff model was used to analyze the runoff characteristics of small mountainous basins, and rainfall-runoff model simulation was performed by reflecting 9 heavy rainfall events and calculated basin characteristic factors. Based on the rainfall-runoff model, parameter optimization was performed for six heavy rain events with large error rates among the simulated events, and the appropriate parameter range for the Danyang 1 Bridge basin, a small mountainous basin, was calculated to be 0.8 to 3.4. The results of this study will be utilized as foundational data for establishing flood forecasting and warning systems in small mountainous basin, and further research will be conducted to derive the range of parameters according to basin characteristics.

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF