• Title/Summary/Keyword: flood current

Search Result 328, Processing Time 0.029 seconds

Environmental Factors and Catch Fluctuation of Set Net Grounds in the Coastal Waters of Yeosu - 2 . Sea Water Circulation in the Vicinity of Set Net Ground - (여수연안 정치망어장의 환경요인과 어황 변동에 관한 연구 - 2 . 어장주변 해역의 해수유동 -)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.142-149
    • /
    • 1994
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu. The current in the vicinity of set net grounds was observed by drogue and current meter in 1990 and 1992. The results obtained are summarized as follows: The direction of tidal current at the north enterance of Yeosu bay was southerly in ebb and northwesterly in flood without the distiction of the neap tide and the spring tide. In spring tide the maximum Velocity of the tidal current was 68 cm/sec in ebb and 66 cm/sec in flood. In neap tide the maximum velocity of the tidal current was 37 cm/sec in ebb and 35 cm/sec in flood. And so the direction of residual current was the south ward mainly and 21 cm/sec. The direction of tidal current at set net fishing grounds was southwesterly in ebb and westerly or northwesterly in flood. Regardless of the distinction of neap and spring. The maximum velocity of the current in spring tide was 50 cm/sec in ebb and 40 cm/sec in flood and that in neap was 28 cm/sec in ebb and 25 cm/sec in flood. In spring tide the speed vector along the major axis of semidiurnal tide component was three times as large as diurnal tide. In neap tide, however, the speed vector was about 50% less then that in spring tide, and the semidiurnal tide and diurnal tide were equal in the size of current ellipse and the direction of major axis. The sea area had a southwesterly residual current. 11 cm/sec in spring tide and 7 cm/sec in neap tide. According to the result of drogue tracking, the vicinity of set net fishing ground had a southerly residual current which formed in Yeosu Bay and a weak westerly residual current toward Dolsando from Namhedo. Therefore, set net fishing ground in coastal water of Yeosu was distributed in boundary of inner water which formed from Seamjin river and offshore water supplied from the vicinity of Sorido and Yochido.

  • PDF

Tidal Current and Suspended Sediment Transport in the Keum Estuary,West Coast of Korea (錦江 鹽河口에서의 潮流와 浮游堆積物 이동)

  • 오임상;나태경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.147-162
    • /
    • 1995
  • The circulation due to tidal current and river discharge, and the associated suspended suspended sediment transport in macrotidal Keum Estuary, were studied through a series of field measurements of tidal currents and suspended sediment concentration at three anchored stations from 1990 through 1992. From the measurements, the following results were obtained. At the seaward entrance of the estuary, the veritical profiles of the ebb and flood currents were almost symmetric. At the southern channel the flood current was dominant in the whole water column, but in the northern channel the ebb current was dominant in the surface and bottom layers and the flood current was dominant in the intermediate layer. The maximum velocity of the tidal current in the southern channel was 174 cm/s during flood tide in the intermediate layer. The maximum velocity, 148 cm/s in the northern channel also appeared during flood tide in the intermediate layer. However, in the surface and bottom layers, the maximum velocities were 110.6 cm/s during ebb tide and 92.1 cm/s during flood tide, respectively. The type of the Keum Estuary can be categorized to 'Type 3' of Hansen and Rattray's scheme. The water column of the estuary during the flood tide becomes stratified, and after high water the ebb current reduces the density difference and the water column becomes turbulent. The lower layer of the water column is generally turbulent. The largest sediment flux 20.61 ton/s was found in the southern channel during flood current in the lowest river discharge (May, 1991), while the smallest flux, 0.65 ton/s in the northern channel in the lowest tidal range (July, 1992). The stronger bottom shear velocity for the present study area seems to erode the bottom sediments during the flood tide, and the relatively long duration of the ebb tide to transport the suspended sediments. Under normal river discharge conditions, the suspended sediments are transported mainly through the southern channel. However, under high river discharge condition the suspended sediment transport is dominant through the northern channel.

  • PDF

A study on the feasibility analysis of the current flood season: a case study of the Yongdam Dam (현행 법정홍수기 타당성 검토 및 개선에 관한 연구: 용담댐 사례)

  • Lee, Jae Hwang;Kim, Gi Joo;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.359-369
    • /
    • 2024
  • Korea prepares for potential floods by designating June 21st to September 20th as the flood season. However, many dams in Korea have suffered from extreme floods caused by different climate patterns, as in the case of the longest consecutive rain of 54 days in the 2020's flood season. In this context, various studies have tried to develop novel methodologies to reduce flood damage, but no study has ever dealt with the validity of the current statutory flood season thus far. This study first checked the validity of the current flood season through the observation data in the 21st century and proved that the current flood season does not consider the effects of increasing precipitation trends and the changing regional rainfall characteristics. In order to deal with these limitations, this study suggested seven new alternative flood seasons in the research area. The rigid reservoir operation method (ROM) was used for reservoir simulation, and the long short-term memory (LSTM) model was used to derive predicted inflow. Finally, all alternatives were evaluated based on whether if they exceeded the design discharge of the dam and the design flood of the river. As a result, the floods in the shifted period were reduced by 0.068% and 0.33% in terms of frequency and duration, and the magnitude also decreased by 24.6%, respectively. During this period, the second evaluation method also demonstrated that flood decreased from four to two occurrences. As the result of this study, the authors expect a formal reassessment of the flood season to take place, which will ultimately lead to the preemptive flood response to changing precipitation patterns.

Landscape Planting Design for Yeoyido Flood Plain Park in Han-river (한강 여의도지구 수변공원 식재설계)

  • 이준복
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.86-95
    • /
    • 2003
  • It had been strictly prohibited to plant in waterway according to Korea laws and regulations. It was then made possible to plant by the modification law and regulation of 10/30/1997. In 2000, the Seoul metropolis government planted in the Yeoyido flood plain park in Han river by way of showing the model case. This planting design is for the Yeoyido flood plain park along the Han river, in Seoul. The design requirements were to create a pleasant rest area, to improve the surrounding landscape, and to create diverse ecological habitats by planting within the stability of flood flow. This design emphasizes the following design requirements that has positive effect on stabilizing flood flow. First, planting suitable in a area was determined by the speed of a current of less than 0.7m/sec under various numerical value simulations. Second, plants were selected in existing trees of the present and the past Han river, as well as the questionnaire results from landscape professional engineers and professors. Shade plants were planted in the large visiting areas so as to offer pleasant shade in the summer, the ecological planting pattern was applied in the area with low speed of flood flow, so as to aid the restoration of the natural ecological environment. It was found that the foresaid planting design verified the stability of flood flow and wind by overturn limit moment calculation. It is expected that this plan would serve environmentally friendly planting plans in flood plain park.

Analysis of Tidal Asymmetry and Flood/Ebb Dominance around the Yeomha Channel in the Han River Estuary (한강하구 염하수로 주변에서의 조석·조류 비대칭과 창·낙조 우세 분석)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.915-928
    • /
    • 2012
  • Han River estuary (HRE) is located at the middle of the western coast of Korea, and tidal currents were measured at 4 stations in this estuary during the winter season, and previously observed tide data was analyzed. The results of amplitude ratio of $M_4/M_2$ showed that increasing upward to estuary in the HRE. Tide harmonic constants of relative phase $2M_2-M_4$ represent flood dominance, with under 180 degree. But this method has a limit of analysis that typically based on the non-linear distortion of the tidal current in tidal lagoon system where freshwater discharge is assumed to be relatively small. The results of statistically tidal current data indicated that ebb current velocity would be great unlike tide data. Ebb and flood duration time is calculated by slack time of tidal current showed that ebb duration time is longer than flood. The results of correlation of analysis show high value (0.9) between tidal current stations from Incheon harbor to north entrance of Yeomha channel. We reconstructed to find the reasons for the features of ebb dominance the results of harmonic analysis. As major component ($M_2$) in combination with shallow water component ($M_4$), the tidal curve was presented flood dominance that has a flood current is stronger. However, these curve were changed to ebb dominance add up the non-harmonic components that had ebb direction flow by calculated tidally averaged current. The characteristic of enhancement on ebb is showed around the Yeomha channel in the HRE, because averaged flow which acts seaward such as long-term tidal current components due to non-linear effect and freshwater which overcome the flood current.

Distributions of Tidal Current, Salinity and Suspended Sediment in Suyoung Bay (수영만의 조류, 염분 및 부유물질의 분포)

  • KIM Cha-Kyum;LEE Jong-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.359-370
    • /
    • 1992
  • To investigate the flow pattern and mixing process in Suyoung Bay, field observations and data analyses of tidal current, salinity and suspended sediment (SS) were carried out. Ebb flow is stronger than flood flow, and duration of ebb tide is longer than that of flood tide. Semi-diurnal component of tidal current is predominant, and current rotating clockwise occurs in the central part of the bay. The direction of the residual currents in the central part of the bay and offshore is almost N to WNW, and the speed is 4-14cm/s. Eulerian diffusion coefficients estimated from the current data have the range of $6.2\times10^4-4.2\times10^6\;cm^2/s,$ Salinity structure in Suyoung River estuary during flood tide is of partially mixed type, but is of stratified type during ebb tide. Salinity fluctuation is large at the surface, and the fluctuation decreases with depth. SS concentration in Suyoung River estuary has a higher value during ebb tide than that during flood tide. Salinity and 55 concentrations in the estuary appeared to be very sensitive to the change of river flow.

  • PDF

Application of Envisat ASAR Image in Near Real Time Flood monitoring and Assessment in China

  • Huang, Shifeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2184-2189
    • /
    • 2009
  • China is one of the countries in which flood occurs most frequently in the world and with the current economic growth; flood disaster causes more and more economic losses. Chinese government pays more attention to flood monitoring and assessment by space technology. Since1983, NOAA(AVHRR), Landsat-TM, LANDSAT-ETM+, JERS-1, SPOT, ERS-2, Radarsat-1, CBERS-1, Envisat have been used for flood monitoring and assessment. Due to the bad weather conditions during flood, microwave remote sensing is the major tools for flood monitoring. Envisat is one of the best satellite with powerful SAR. Its application for flood monitoring has been studied and its near real time(NRT) application can be realized on the basis of real-time delivery of image. During the 2005, 2006 and 2007 flood seasons, over the 31 NRT flood monitoring based on Envisat, had been carried out in Yangtze, Songua, Huaihe, pearl river basin. The result shows that Envisat SAR is very useful data source for flood disaster monitoring and assessment.

  • PDF

Flood Forecasting and Utilization of Radar-Raingauge in Japan

  • Kazumasa, Ito;Shigeki, Sakakima;Takuya, Yagami
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.62-71
    • /
    • 2004
  • There are 109 A class rivers in Japan. One purpose of river management is to reduce the flooding. For this purpose, government provides the information to public, as flood forecasting, rainfall forecasting and estimate the runoff magnitude to avoid the flood and inundation. In this paper, we introduce current situation of flood forecasting and rainfall forecasting in Japan, and we describe how to use the information of flood forecasting and rainfall forecasting in conjunction with current strategy for river management.

  • PDF

Comparison of Flood Discharge and Velocity Measurements in a Mountain Stream Using Electromagnetic Wave and Surface Image (전자파와 수표면 영상을 이용한 산지하천 홍수유량 및 유속 계측 비교 연구)

  • Yang, Sung-Kee;Kim, Dong-Su;Yu, Kwon-Kyu;Kang, Meyong-Su;Jung, Woo-Yul;Lee, Jun-Ho;Kim, Yong-Seok;You, Ho-Jun
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.739-747
    • /
    • 2012
  • Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.

A Study on Analysis of Damaged Facilities in Rural Area by Storm and Flood Hazard (풍수해에 의한 농촌지역 피해시설 현황 분석)

  • Lim, Chang-Su;Oh, Yun-Kyung;Lee, Seung Chul;Kim, Eun-Ja;Choi, Jin-Ah
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.19-29
    • /
    • 2016
  • Disasters that occur most frequently in rural areas are drought, flood, damages from wind and cold weather. Among these, damages from storm and flood and drought are the main disasters and recently, these are occurring on a large scale due to unusual weather conditions. Under such circumstances, projects and researches on disasters in rural areas are under way but they are mostly targeting one area or making approaches focusing on repair facilities, maintenance project of facilities in small streams, and disaster management, so there have not been enough studies on the current status of overall damaged facilities in the rural areas. Against this backdrop, through the analysis of the current status of damaged facilities due to storm and flood in rural areas, this study aims to provide base data for policies needed for disaster recovery planning and maintenance work of rural areas. For the analysis of damaged facilities due to storm and flood in rural areas, using the annual report on disasters issued by Ministry of Public Safety and Security and based on the occurrence rate of estimated damage in each city and district for the past 10 years(2004~2013), 8 areas with the highest number of occurrence and cost of damage were found from each province and target areas were selected. Then, regarding the selected target areas, the General Plan for Reducing Damages from Storm and Flood, which is the report on top-level plan for preventing disasters, was secured and the current status of damaged facilities were analyzed. After organizing the analysis of current status, the tendency of damaged facilities due to storm and flood in rural areas, the items of damaged facilities depending on the types of storm and flood damages, and risk factors were suggested. Based on this result, in order to generalize the results of follow-up researches, it is thought that disaster recovery planning and establishing the system of remodeling items necessary for maintenance work would be possible by analyzing damage investigation items recorded in additional researches on rural areas, researches on natural disasters, and recovery plan instructions and by conducting on-site investigation on the damaged villages from storm and flood in rural areas.