• Title/Summary/Keyword: floc 특성

Search Result 85, Processing Time 0.03 seconds

Relationship between Physical Property of Re-agglomerated Floc and Turbulent flow (난류모델을 이용한 재응집 Floc의 물리적 특성 연구)

  • Park, No-Suk;Kim, Seong-Su;Kim, Kwan-Youp;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.103-108
    • /
    • 2010
  • Until now, research reports that it is difficult for brokenup floc after coagulation to reaggregate and settling efficiency of reaggregated floc is relatively low have dominated in water treatment process. In contrast, from recent study conducted by the French researcher, because the density of the reaggregated floc was higher than the previous floc, the settling efficiency of reaggregated floc increased. In this study, 15 times wet test were carried out and the removal efficiency of reagrregated floc was considerably increased. Moreover, this result was explained using the turbulent model for the flow occurred around the floc. Consequently, in the case of suitable hydrodynamic condition for the reaggregation, the characteristics of the reaggregated floc was changed into the favorable condition for improvement of settling efficiency. Also, the most important factor for reaggregation of floc was governed by hydrodynamic shear stress.

Pollutant Removal and Characteristic of Floc by Alum Coagulation (응집 현상에 따른 오염물질 제거 및 입자 형태 특성: Alum을 사용한 경우)

  • Moon, Byung-Hyun;Kim, Seung-Hyun;Lee, Hyang-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1263-1271
    • /
    • 2000
  • This study investigated the floc structure and removal of turbidity and organic matter by alum coagulation. Results of this study indicated that sweep floc and charge neutralization area were shifted to more acidic region than that in the Amirtharajah's diagram. This was caused by organic matter present in the raw water. Removal regions of turbidity and organic matter were generally overlapped. However, organic matters was removed better at lower pH than turbidity. Floc structure was characterized by measuring fractal dimension and volume diameter using AIA and SALLS. SALLS method was found to be more reliable than AIA method. Floes in sweep floc region had larger size and fractal dimension than flocs in charge neutralization region. As pollutant removal increased, larger fractal dimension and size of floc were measured.

  • PDF

Effect of Retention System on the Characteristics of Floc and Retention (보류 시스템이 Floc 특성과 보류에 미치는 영향)

  • 김용식;원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • The floc characteristics of base paper stock for coating by the retention aid system consisting of polyacrylamide (high molecular weight low charge density, HMLC) and PEI without and with anionic inorganic oxide (IO) were investigated under various shear conditions of MDDA (modified dynamic drainage analyzer). The floc size was increased with cationic electrolytes dosage whatever inorganic oxide is applied or not. The effect of inorganic oxide on the floc size showed the different result between PAM and PEI. The smaller floc was obtained by PAM without inorganic oxide, but larger floc was obtained by PAM with inorganic oxide. However, the effect of shear force was not observed. Floc formation index was decreased by the addition of cationic electrolytes with or without inorganic oxide. Floc formation index had better correlation format formation index than floc size. The relationships between wet web permeability and mat air permeability showed the significant linear correlation ($R^2$=0.97~0.98) for HML PAM and PEI. Floc formation index gave more useful information than the retention measurement when the performance of retention aids is evaluated at the laboratory before applying at the paper mill.

  • PDF

Effects of ballasting Agent (Microsand) on Physical Floc Characteristics (세사 투입에 따라 형성된 플럭의 물리적 특성)

  • Ryu, Jae-Na;Lim, Yoon-Dae;Oh, Je-Ill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.485-493
    • /
    • 2010
  • Chemical coagulation destabilizes colloidal particles so that particles grow to larger flocs. Solid particles are then removed by solid-liquid separation after typical precipitation. Rapid precipitation enhances the separation by reducing the precipitation time with larger and denser particles. Conventionally, polyelectolyte compounds (polymers) function as a flocculant aid by introducing a interparticle binding, which increases the particle size and density. And more recent ballasted flocculation adds a ballasting agent (microsand) to form denser particles with its high-density(sp gr=2.65). The current research was to evaluate the manner in which ballasted flocs are formed under different injection timings of microsand and to recognize the effects on floc formation. $FeCl_3$ as a coagulant, anionic polymer for a flocculation aid and microsand were used for the floc formation. Floc size (diameter) was widely ranged with the highest mean value when microsand was injected between $FeCl_3$ and polymer. Mean floc density was larger when the floc formed smaller. Settling velocity increased with larger floc size, whilst not significantly affected by the timing of microsand injection. The additional slow mixing on floc formation increased floc size to some extent.

A Study on Characteristics of Sedimentation Rate of Suspended Fine Particles under Floc Size and Density (플록의 입경과 밀도에 따른 부유된 미세 미립자의 침전률 특성에 관한 연구)

  • Kim, Jong-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.107-113
    • /
    • 2009
  • This paper considers the influence of floc on the sedimentation rate for the cohesive material. The effects of floc density and size changes were also taking into consideration during the experiment. The settling velocity of a discrete floc was measured in a quiescent water column. Floc diameter and density were investigated using a modified Stokes equation with some constants such as water density, viscosity, material density and the floc fractal dimension $n_f$ obtained from the relationship between the floc diameter and the floc settling. The floc diameter of quartz and alumina increased at increasing initial concentrations. The floc size of quartz with increasing NaCl concentration varied between approximately 0.8 um to $10{\mu}m$. Floc density decreased as floc size increased. The floc settling velocity and the floc diameter have a straight line relationship on a logarithm. The floc fractal dimension nf was 2.65 with increasing of initial concentration and 2.93 with increasing of NaCl. The exponent n to predict the settling velocity was proposed and varied from 1 to 1.93.

Measurements of Velocity and Suspended Sediment Concentration for Understanding of Property of Sediment floc (퇴적물 floc의 특성 파악을 위한 유속 및 부유사 농도 변화 관측)

  • Jung, Eui-Taek;Yang, Su-Hyun;Kim, Dong-Ho;Hwang, Kyu-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.717-721
    • /
    • 2012
  • 유속(혹은 난류강도) 증감에 따른 floc 특성의 변화를 파악하기 위하여, 현재 연안 개발이 활발히 수행되고 있는 목포해역을 대상으로 ADCP를 이용한 층별 유속 및 부유사 농도의 연속관측이 수행되었다. 목포해역 내 대표정점에서 층별로 유속 유향 및 음파 intensity와 함께 전체 수심데이터가 5분 간격으로 측정되었으며, ADCP 음파의 intensity와 부유사 농도의 상관관계 분석을 위하여 동일 시간동안 채수기를 이용하여 water sampling(30분 간격) 또한 동시에 수행되었다. 관측시간 동안의 목포해역은 낙조류의 흐름특성을 가지며, 표층에서의 최강유속은 24.5cm/s, 유향은 대체적으로 NW~N향 사이에 분포하는 것으로 나타났다. 또한 층별 부유사 농도는 그 차이가 매우 미미한 것으로 나타났다. 본 연구를 통하여 관측된 자료들은 퇴적물의 제반 이송특성 연구를 위한 기초자료로 활용될 수 있을 뿐만 아니라, 향후 퇴적물 이송 및 수질 예측/평가를 위한 수치모형 적용시 입력자료로 유용하게 사용될 수 있을 것이다.

  • PDF

The Characteristics of Flow and Movement of Floc in the Sedimintation Basin (침전지내 흐름 및 플럭의 이동 특성에 관한 연구)

  • Choe, Gye-Un;Kim, Jeong-Hyeon;Lee, Myeon-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.177-184
    • /
    • 1999
  • In this paper, the characteristics of the flow and the movement of the floc were analyzed through the experiments in the sedimentation basin using the redioisotope. Tc-99m radioisotope was used for the experiments for the characteristics of the flow, and the bentonite absorbing Tc-99m radioisotope was used in the experiments for the movement of the floc. Through the experiments of the flow, it was found that the velocities of flow in the sedimentation basin were different depending upon the position and the depth. The distance of the moving trajectories of the floc is increased by increasing the discharge. By increasing the discharge, the settling point is farther from the inlet, and the turbidity removal efficiencies in the sedimentation basin are decreased. The moving velocities of the floc and the density are changed in the different depths in the sedimentation basin.

  • PDF

Floc Property of Yeongsan Cohesive Bed Sediment with Respect to Salinity and Sediment Concentration (점착성 퇴적물의 염분과 퇴적물농도에 따른 플럭 특성: 플럭카메라를 이용한 실험연구)

  • Shin, Hyun-Jung;Smith, S. Jarrell;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2013
  • To examine floc characteristics of cohesive bed sediment of the Yeongsan River estuary, a floc camera system has been developed and utilized to observe flocs under varying conditions. In order to validate the floc camera system, sand particles were passed through 88-125 and $63-88{\mu}m$ sieves and observed within the laboratory. Mean grain size and settling velocities were found to be 102 and $56.2{\mu}m$ and 6.7 and 5.9 mm/s, respectively. Artifacts of particles estimated outside of the sieve range are attributed to being imaged out of the depth of focus. However, as mean grain size and settling velocity of each size class were within the confidence interval, the floc camera system was confidently used to examine cohesive bed sediments of Yeongsan River estuary. The bed sediment sample was prepared with a concentration of 0.1 g/L in 0 psu deionized water. The mean grain size, settling velocity and fractal dimension of flocs were $40.6{\pm}0.66{\mu}m$, 14 mm/s, and 2.86, respectively. Experiments were also conducted using different salinities (10 and 34 psu) and sediment concentrations (0.1 and 0.3 g/L). Despite changing these parameters, the mean observed grain size and settling velocities were found to be the same within the error range of the system. The relatively higher values of settling velocity and fractal dimension are considered a result of the sediment containing relatively small concentrations of organic matter. Moreover, consistent floc size over various grain sizes and concentrations may be the result of insufficient turbulence to aggregate flocs.

The Characteristics of Iron(Fe) Floc Formation for Treatment of Acid Mine Drainage (산성 광산 배수의 처리를 위한 철(Fe) 성분의 플럭 형성 특성)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.89-92
    • /
    • 2013
  • The characteristics of floc formation of the iron(Fe) ions was studied for developing the process treating the acid mine drainage. The metal ions in aqueous solution oxidized with oxygen in air, which generated hydrogen ion and lowered the pH of the aqueous solution. The iron(Fe) ions were formed into flocs by the acid-base reaction with the added $Ca(OH)_2$ for the neutralizing the solution. There were several variables affecting the formation, size and color of floc; whether air was present or not, air feeding rate, oxidizing time, concentration of $Ca(OH)_2$, the acid-base reaction time of the $iron(Fe)-Ca(OH)_2$. For proper formation of the $iron(Fe)-Ca(OH)_2$ flocs and developing the floc treating system, the control variables mentioned above should be considered.

  • PDF

Physical Characteristics of Floc Density of Suspended Fine Particles in accordance with the Cohesiveness (점착성에 따른 부유 미립자의 플럭밀도에 대한 물리적 특성)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • This paper was examined the physical characteristics of floc density of suspended fine particles with varying cohesiveness. The analysis of floc density was performed in a small annular flume with a free water surface under different bed shear stresses and ion addition. Fine-grained silica was used as model material, as it is the main mineral components of clay that affects sedimentation. It was concluded that floc density depended on increasing the bed shear stress, the salinity and pH value. Floc density decreased with increasing the salinity in still water and floc size, whereas the opposite was true when increasing the bed shear stress. Also, it increased at pH6.8 more than at pH4.2 when increasing the bed shear stress in the range from 0.0086 to $0.0132N/m^2$.