A Study on Characteristics of Sedimentation Rate of Suspended Fine Particles under Floc Size and Density

플록의 입경과 밀도에 따른 부유된 미세 미립자의 침전률 특성에 관한 연구

  • 김종우 (경기대학교 공과대학 토목공학과)
  • Published : 2009.08.31

Abstract

This paper considers the influence of floc on the sedimentation rate for the cohesive material. The effects of floc density and size changes were also taking into consideration during the experiment. The settling velocity of a discrete floc was measured in a quiescent water column. Floc diameter and density were investigated using a modified Stokes equation with some constants such as water density, viscosity, material density and the floc fractal dimension $n_f$ obtained from the relationship between the floc diameter and the floc settling. The floc diameter of quartz and alumina increased at increasing initial concentrations. The floc size of quartz with increasing NaCl concentration varied between approximately 0.8 um to $10{\mu}m$. Floc density decreased as floc size increased. The floc settling velocity and the floc diameter have a straight line relationship on a logarithm. The floc fractal dimension nf was 2.65 with increasing of initial concentration and 2.93 with increasing of NaCl. The exponent n to predict the settling velocity was proposed and varied from 1 to 1.93.

본 연구는 점착성 미립자의 침전률에 대한 플록의 영향에 관한 것이다. 연구 진행시 플록 밀도와 입경변화의 영향도 고려하였다. 플록입자의 침전속도는 정지수면에서 측정되었다. 플록 입경과 밀도는 수정된 Stokes방정식에 유체의 밀도, 입자의 밀도, 점성계수 및 측정된 침전속도와 입경과의 관계식으로부터 얻은 플록 차원을 이용하여 분석되었다. 석영과 알루미나의 플록지름은 초기농도가 증가함에 따라 증가되었으며, 염도농도의 증가에 따른 석영의 플록된 입경은 $0.8{\sim}10$ ${\mu}m$이다. 플록밀도는 입경이 증가함에 따라 감소하였다. 플록 침전속도와 입경의 관계는 로그표위에 직선식으로 표현된다. 플록 차원($=n_f$)은 초기농도가 증가할 경우 2.65이며, 염도가 증가할 때 2.93이다. 침전속도를 예측하기 위한 비례상수(n)는 제시되었으며, 그 범위는 $1{\sim}1.93$이다.

Keywords

References

  1. 김재중 (1989) 점성토의 침식 및 퇴적에 관한 실험적 연구, 박사학위논문, 서울대학교
  2. 김종우, 윤세의, 이종태 (2005) 점착성 퇴적물의 침전 특성 분석. 한국수자원학회논문집, 제38권, 제2호, pp. 133-142 https://doi.org/10.3741/JKWRA.2005.38.2.133
  3. 황규남, 김현민, 안익장 (2008) 새만금 인공호 점착성 퇴적물의 침식특성에 대한 실험적 연구. 한국수자원학회논문집, 제41권, 제5호, pp. 473-482 https://doi.org/10.3741/JKWRA.2008.41.5.473
  4. 황사구, 정기영 (2006) 안동 임하댐 유역의 지질과 임하호 고탁수의 원인. 자원환경지질, 제39권, 제6호, pp. 771-786
  5. Fox, J.M., Hill, P.S., Milligan, T.G., Ogston, A.S. and Boldrin, A. (2003) Floc Fraction in the Waters of the Po River Prodelta. Accepted for publication in Continental Shelf Res
  6. Hawley, N. (1982) Settling Velocity Distribution of Natural Aggregates. J. Geophys. Res. Vol. 87(C12), pp. 9489-9498 https://doi.org/10.1029/JC087iC12p09489
  7. Khelifa, A. and Hill, P.S. (2006a) Models for effective density and settling velocity of flocs. J. Hydraul. Res. Vol. 44(3), pp. 390-401 https://doi.org/10.1080/00221686.2006.9521690
  8. Kim, A.S. and Stolzenbach, K.D. (2004) Aggregate formation and collision efficiency in differential settling. J. Colloid Interface Sci. Vol. 271, pp. 110-119 https://doi.org/10.1016/j.jcis.2003.10.014
  9. Kim, J.W. and Nestmann, F. (2009) Settling behavior of fine-grained materials in flocs. J. Hydraul. Res. Vol. 47(4), pp. 492-502 https://doi.org/10.1080/00221686.2009.9522025
  10. Kranenburg, G. (1994) The Fractal Structure of Cohesive Sediment Aggregates. Estuarine Coastal Shelf Sci. Vol. 39, pp. 451-460 https://doi.org/10.1016/S0272-7714(06)80002-8
  11. Krishpnappan, B.G., Marsalek, J., Watt, W.E. and Anderson, B.C. (1999) Seasonal Size Distributions of Suspended Sediments in a Stormwater Management Pond. Water Sci. Technol. 39(2), pp. 127-134 https://doi.org/10.1016/S0273-1223(99)00016-5
  12. Lau, Y.L. and Krishnappan, B.G. (1997). Measurement of Size Distribution of Settling Flocs. NWRI Publication No. 97-223, National Water Research Institute, Environment Canada, CCIW, Burlington, Ontario, Canada
  13. Mehta, A.J. and Parthenlades, E. (1975) An investigation of the depositional properties of flocculated fine sediments. J. Hydraul. Res. 13(4), pp. 361-381 https://doi.org/10.1080/00221687509499694
  14. Mihopulos, J. (1995) Wechselwirkung Flockenbildung – Flockenabtrennung unter Berücksichtigung der Durchströmungsmuster in Sedimentations- und Flotationsbecken. Mitt. Inst. f$\ddot{u}$r Siedlungswasserwirtschaft, Universität Karlsruhe, Heft 72
  15. Stokes, G.G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambrige Philosophical Society 9(8), pp. 287-298
  16. Tambo, N. and Watanabe, Y. (1979) Physical Aspect of Flocculation Process-I. Fundamental Treatise. Water Res. Vol. 13, pp. 429-439 https://doi.org/10.1016/0043-1354(79)90035-6
  17. van Der Lee, W.T.B. (2000) The settling of mud flocs in the Dollard estuary. Ph. D. Theis, University Utrecht, The Netherlands
  18. van Leussen, W. (1994) Estuarine macro flocs and their role in finegrained sediment transport. Ph. D. Thesis, University Utrecht, The Netherlands
  19. van Olphen H. (1966) An introduction to clay colloid chemistry. Interscience Publischers, New York
  20. van Rijn, L.C. (1993) Principles of fluid flow and surface waves in rivers, estuaries seas and oceans. Delft Hydraulics, Delft, The Netherlands
  21. Winterwerp, J.C. (1998) A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul. Res. 36(3), 309-326 https://doi.org/10.1080/00221689809498621
  22. Winterwerp, J.C. (2002) On the flocculation and settling velocity of estuarine mud. Continental Shelf Res. Vol. 22, pp. 1339-1360 https://doi.org/10.1016/S0278-4343(02)00010-9