• Title/Summary/Keyword: floating bacteria

Search Result 29, Processing Time 0.029 seconds

A Study on the Analysis of Environmental Hazards when Dismantling Non-Structure of Old Residential Buildings (노후 주거용 건축물 비구조체 해체 시 환경유해인자 분석)

  • Son, Byeung-Hun
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • The number of old buildings older than 30 years in Korea continues to increase from 29.9% in 2005 to 38.8% in 2020. Considering the growing urban regeneration projects, urban maintenance projects, the suppression of urban expansion, and the lack of idle land in the city, the dismantling of old buildings is expected to increase further in the future. As major accidents at building dismantling sites continue to occur, related agencies are also strengthening safety management of building dismantling works. While physical safety management such as collapse and fall is strengthened, there is a relative lack of interest in the health of workers at dismantling sites due to environmental hazards. Since relevant laws stipulate that construction waste should be separated and discharged, old buildings need to be considered for environmental hazards such as fine dust, floating bacteria, and floating molds when dismantling. In this study, we intend to find important safety management elements in the management of building dismantling sites, measure environmental factors harmful to dismantling workers, and present basic data for the management of dismantling sites in the future. "Safety management" was the highest priority, followed by "dust," "vibration," "noise," "bacteria," and "smell." The perception of the importance of "physical damage prevention" with workers working on dismantling and managers managing the site came out similar, but the perception of "work efficiency" and "health disorder prevention" through environmental hazard management showed different priorities. In the process of dismantling, floating bacteria and floating mold were collected, cultured, and measured the concentration in the indoor air. The measurement was measured by dividing it into pre-dismantling and during dismantling.

Bacterial Numbers and Exoenzymatic Activities in Pore Water of Artificial Floating Island Installed in Lake Paldang (팔당호 인공식물섬 공극수에서 미생물 개체수와 체외효소활성도)

  • Kim, Yong-Jeon;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • To evaluate the functions of vegetation mat of artificial floating island (AFI) installed in Lake Paldang, nutrients, such as total phosphorus (TP), dissolved inorganic phosphorus (DIP), total nitrogen (TN) and nitrate $(NO_3)$ and microbial factors such as total bacterial numbers, active bacterial numbers and exoenzymatic activities of $\beta$-glucosidase and phosphatase in pore water of medium and bulk lake water were analyzed. The concentration of TN and $NO_3$ in pore water ranged from 4.4 to 7.5mg $L^{-1}$ from 1.2 to 3.8mg $L^{-1}$ respectively, which were ca. 2 times higher than those of lake water. The ranges of TP and DIP of were $1.4\sim4.1mg\;L^{-1}$ and $0.003\sim0.137mg\;L^{-1}$ in pore water of media which were $4\sim25$ and 5 times higher than those of lake water, respectively. The numbers of total bacteria and active bacteria in pore waterwere about 10 times higher than those of laker water. Also, both phosphatase and $\beta$-glucosidase activities of pore water were on an average 10 times higher than those of lake water. These results suggest that the bacteria were playing important role for nutrients concentrating and cycling in media of artificial floating island. And the medium of artificial floating island contained newly created microbial ecosystem, which is responsible for sustaining the growth of macrophytes and the creation of new aquatic ecosystem.

Isolation of Protease-Producing Arctic Marine Bacteria

  • Lee, Yoo-Kyung;Sung, Ki-Cheol;Yim, Joung-Han;Park, Kyu-Jin;Chung, Ho-Sung;Lee, Hong-Kum
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.215-219
    • /
    • 2005
  • We isolated and identified three protease-producing bacteria that had inhabited the region around the Korean Arctic Research Station Dasan located at Ny-Alesund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. Biofilms were collected from the surface of a floating pier and from dead brown algae in a tide pool near the seashore. The biofilm samples were transported to the Korea Polar Research Institute (KOPRI) under frozen conditions, diluted in sterilized seawater, and cultured on Zobell agar plates with 1% skim milk at $10^{\circ}C$. Three clear zone forming colonies were selected as protease-producing bacteria. Phylogenetic analysis based on 16S rDNA sequences showed that these three stains shared high sequence similarities with Pseudoalteromonas elyakovii, Exiguobacterium oxidotofewm Pseudomonas jessenii, respectively. We expect these Arctic bacteria may be used to develop new varieties of protease that are active at low temperatures.

Disinfection and Removal of SS and T-P Using DOF (Dissolved Ozone Flotation) (DOF(Dissolved Ozone Flotation)를 이용한 부유물질과 총인의 제거와 소득의 동시효과에 관한 연구)

  • Lee., Byoung-Ho;Kim, Sung-Hyuk;Lee, Sang-Bae;Kim, Mi-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2004
  • Effluent of wastewater treatment plant is to be disinfected to protect drinking water sources. DOF (Dissolved Ozone Flotation) was developed to meet this purpose. DOF was developed by combining DAF system with ozone. DAF system has good floating power with numerous microbubbles, and ozone has strong oxidation capability. And DOF system has good floating power and strong oxidation capability simultaneously. When DOF was applied to secondary wastewater effluent, color of 11CU in raw water which was secondary effluent was reduced to 1CU by the DOF system. Removal rate of other water quality parameters treated by DOF were also higher than that by DAF, which were proved the strength of oxidation capability of ozone. When ozone concentration of 3.3mg/l were applied in DOF system, general aerobic bacteria were reduced to 5CFU/ml from TNTC (Too many Numbers To Count). With the same ozone concentration, total coliform were not detected at all. These figures are under the numbers of drinking water regulation. These microbes were the target parameters of DOF. It was proved that DOF was very effective in disinfection of wastewater treatment plant effluent as well as in removal of color, turbidity, and T-P.

A Study on the Measurement of Total Airborne Bacteria in the Process of Dismantling the Non-structure of Old Building (노후건축물 비구조체 해체과정에서의 총부유세균 발생량측정에 관한 연구)

  • Son, Byeung-Hun;Kang, Kyung-Ha;Lee, Ji-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.313-314
    • /
    • 2021
  • An old building over 30 years old continue to increase. Therefore, there will be more dismantling of old buildings in the future. Safety management of dismantling works is being strengthened. However, no consideration has been given to the effects of dismantling workers and their residents due to environmental hazards arising from the demolition process. Only spray and dust prevention measures are subject to inspection to minimize dust generation considering civil complaints around the site of dismantling work. In this paper, residential buildings, which account for the largest proportion of old buildings, were collected and identify total airborne bacteria and floating fungi among environmental hazards caused by non-structural dismantling work. Measurement results showed that workers during dismantling work are working in places with 4.8 times more total airborne bacteria than indoor air quality maintenance standards. Related research is needed for the health of dismantling workers.

  • PDF

Changes of Microorganisms During Fresh-Cut Cabbage Processing: Focusing on the Changes of Air-Borne Microorganisms (신선편이 양배추 제조공정 단계별 미생물 변화: 공기 중 미생물 변화를 중심으로)

  • Seo, Jung-Eun;Lee, Jong-Kung;Oh, Se-Wook;Koo, Min-Seon;Kim, Young-Ho;Kim, Yun-Ji
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.288-293
    • /
    • 2007
  • To evaluate effects of airborne microorganisms in fresh cut processing plant, microorganisms in air, equipments, raw material, water and final product were isolated and identified using Vitek (R)2 compact system. Airborne microorganisms were isolated from 1000L air using air sampler for floating microorganisms and plate count agar for falling microorganisms. And contaminated microorganisms of equipment, water, and product were isolated from plate count agar plate. Total plate counts for floating and falling, raw material, equipments and final product were $10^2-10^3CFU/m^3,{\sim}10^1CFU/plate,\;10^3CFU/g,{\sim}10^4CFU/cm^2\;and\;10^4CFU/g$, respectively. From the result of isolated microorganism identification from raw material to final product, airborne microorganisms could affect the flora of final product.

Bacterial Abundances and Enzymatic Activities in the Pore Water of Media of Artificial Floating Island in Lake Paro (파로호에 설치된 인공식물섬 식생기반재의 공극수에서 세균 분포와 체외효소활성도)

  • Kim, Yong-Jeon;Hur, Jai-Kyou;Nam, Jong-Hyun;Kim, In-Seon;Choi, Kyoung-Suk;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • For restoration of disturbed ecosystem in Lake Paro, artificial floating island (AFI) was installed. Even though the lake water was oligo-mesotrophic, the macrophytes, such as Iris ensata, Iris pseudoacorus, Phragmites communis were growing well in the rubberized coconut fiber media. For elucidating this process, total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase of pore water of media and lake water were analyzed. The average of total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase were $28.6{\times}10^{6}\;cells/ml,\;22.7{\times}10^{6}\;cells/ml,\;452.9nM/L/hr,\;and\;16381.9nM/L/hr$ which were 10, 15, 22 and 38 times higher than those of lake water, respectively. Moreover, the total phosphorus and total nitrogen concentration of media showed high values of 0.82 mg/L and 7.0 mg/L, respectively, while those of lake water 0.07 mg/L and 2.3 mg/L. This results suggest that the bacteria was playing an important role for restoration of disturbed ecosystem with newly created microbial ecosystem in media of artificial floating island.

Microbial Contamination of Seasoned and Dried Squid Dosidicus gigas during Processing (조미오징어(Dosidicus gigas)의 가공 공정 중 미생물 오염도 및 오염원에 관한 연구)

  • Choi, Kyoo-Duck;Park, Uk-Yeon;Shin, Il-Shik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.445-453
    • /
    • 2012
  • This study examined microbial contamination during seasoned and dried squid Dosidicus gigas processing, including the apparatus, machines, and employee's gloves at each step in processing at two companies. The numbers of bacteria floating in air in each processing area were also examined. The numbers of Staphylococcus aureus (3.6-6.0 log CFU/g) and Escherichia coli (1.3-1.4 log MPN/100 g) in domestic and imported daruma (a semi-processed product of seasoned and dried squid) at companies A and B exceeded the regulatory limits of the Food Sanitary Law of Korea (S. aureus, ${\leq}2.0$ log CFU/g; E. coli, negative). S. aureus in both daruma was reduced to below the detection limit or 3.6 log CFU/g after the roasting step, but increased again to 3.3 and 5.5 log CFU/g after the mechanical tearing step at companies A and B, respectively. E. coli showed similar tendencies at both companies. The surfaces of the apparatus, machines, and employee's gloves that contacted daruma were also contaminated with S. aureus (1.0-5.5 log CFU/$m^2$) and E. coli (negative-to 3.5 log MPN/$m^2$). The numbers of bacteria floating in air were high (1.7-5.1 log CFU/$m^3$) at both companies. These results suggest that sanitation standard operating procedures (SSOP) must be developed to control of microbial cintamination in seasoned and dried squid.

Advanced Secondary Wastewater Treatment Using the DOF (Dissolved Ozone Flotation) System (DOF(Dissolved Ozone Flotation) 시스템을 이용한 하수처리장 방류수의 고도처리에 대한 연구)

  • Lee, Byoung Ho;Kim, Sang Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.767-774
    • /
    • 2005
  • The DOF (Dissolved Ozone Flotation) system was used to treat the effluent of the secondary wastewater treatment plant. The DOF system uses ozone instead of air, while DAF (Dissolved Air Flotation) uses air. Moreover, since the solubility of ozone is higher than air, the DOF system produces larger volume of micro-bubbles than the DAF system does. Thus, the DOF system performs better than the DAF system in floating ability. The DOF system could remove 70% of turbidity to an average of 0.59NTU in effluent from 2.31NTU in influent. The removal efficiency of absorbance measured with UV-254 in the effluent of the DOF system was 63%, while only 19% was removed by the DAF system. the DOF system removed 84% of the color from 25~26CU to 4CU, while DAF system removed 42% of the color to 15 CU. The CODMn removal efficiency of the DOF system was 34%, 6.8mg/l of effluent $COD_{Mn}$ concentratin, while it was 20%, 8.3mg/L of effluent $COD_{Mn}$ concentratin, to use the DAF system. Microbial bacteria such as coliform bacteria, and heterotrophic bacteria were removed over 99% by the DOF system, and 42~45% by the DAF system. That is, Microbial bacteria were almost completely destroyed by the DOF system. To sum up with, the DOF system was found to be very effective to treat effluent of the wastewater treatment plant.

Microbial Contamination in a Facility for Processing of Fresh-Cut Leafy Vegetables (신선편이 채소류 가공작업장 내 시설 및 제품의 미생물 오염 실태)

  • Kim, Byeong-Sam;Lee, Hye-Ok;Kim, Ji-Young;Yoon, Doo-Hyun;Cha, Hwan-Soo;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.573-578
    • /
    • 2009
  • Microbial contamination levels in a fresh-cut leafy vegetable processing plant were evaluated. Total plate counts of samples collected from the walls, equipment, and raw materials ranged from $10^1{\sim}10^2$ CFU/100 $cm^2$, $10^0{\sim}10^4$ CFU/100 $cm^2$, and $10^4{\sim}10^6$ CFU/g, respectively. No coliforms were detected on walls; however, equipment and raw materials contained coliforms in concentrations ranging from ND (not detected)to $10^2$ CFU/100 $cm^2$ and $10^4{\sim}10^5$ CFU/g, respectively. Additionally, total plate counts for falling and floating bacteria in the processing plant were $10^0{\sim}10^1$ CFU/plate and $10^1{\sim}10^3$ $CFU/m^3$, respectively. Pathogenic microorganisms such as Escherichia coli, Salmonella spp, Staphylococcus aureus, or Listeria monocytogenes were not detected on walls, equipment, or raw materials. Overall, the results of this study indicate that hygiene control in the fresh-cut processing plant should be improved.