Bacterial Numbers and Exoenzymatic Activities in Pore Water of Artificial Floating Island Installed in Lake Paldang

팔당호 인공식물섬 공극수에서 미생물 개체수와 체외효소활성도

  • Kim, Yong-Jeon (Department of Environmental Science, Kangwon National University) ;
  • Choi, Seung-Ik (Institute of Environmental Research of Kangwon National University) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
  • 김용전 (강원대학교 환경과학과) ;
  • 최승익 (강원대학교부속환경연구소) ;
  • 안태석 (강원대학교 환경과학과)
  • Published : 2008.03.31

Abstract

To evaluate the functions of vegetation mat of artificial floating island (AFI) installed in Lake Paldang, nutrients, such as total phosphorus (TP), dissolved inorganic phosphorus (DIP), total nitrogen (TN) and nitrate $(NO_3)$ and microbial factors such as total bacterial numbers, active bacterial numbers and exoenzymatic activities of $\beta$-glucosidase and phosphatase in pore water of medium and bulk lake water were analyzed. The concentration of TN and $NO_3$ in pore water ranged from 4.4 to 7.5mg $L^{-1}$ from 1.2 to 3.8mg $L^{-1}$ respectively, which were ca. 2 times higher than those of lake water. The ranges of TP and DIP of were $1.4\sim4.1mg\;L^{-1}$ and $0.003\sim0.137mg\;L^{-1}$ in pore water of media which were $4\sim25$ and 5 times higher than those of lake water, respectively. The numbers of total bacteria and active bacteria in pore waterwere about 10 times higher than those of laker water. Also, both phosphatase and $\beta$-glucosidase activities of pore water were on an average 10 times higher than those of lake water. These results suggest that the bacteria were playing important role for nutrients concentrating and cycling in media of artificial floating island. And the medium of artificial floating island contained newly created microbial ecosystem, which is responsible for sustaining the growth of macrophytes and the creation of new aquatic ecosystem.

팔당호에 설치된 인공식물섬 식생기반재 내에서 세균의 생태학적 기능을 파악하기 위하여 식생기반재 내의 공극수와 호숫물에서 총인(TP), 용존인(DIP), 총질소(TN), 질산성질소$(NO_3)$총세균수, 활성세균수와 체외효소활성도를 측정하였다. 인공식물섬 식생기반재의 공극수에서 TN과 $NO_3$농도는 각각 $4.4\sim7.5mg\;L^{-1}$, $1.2\sim3.8mg\;L^{-1}$ 범위로 호숫물보다 약 2배 높게 나타났으며, TP와 DIP값도 식생기반재 공극수에서 각각 $1.4\sim4.1mg\;L^{-1}$, $0.003\sim0.137mg\;L^{-1}$ 범위로 TP 값은 호숫물보다 약 $4\sim25$배, DIP값은 5.3배 높은 값이었다. 총세균수와 활성세균수는 호숫물보다 10배 이상 값을 보였다. 또한 phosphatase 및 $\beta$-glucosidase 활성도도 인공식물섬 공극수에서 호숫물보다 10배 이상의 높은 결과를 보여 식생기반재 내부에서 세균에 의한 영양염류의 농축과 왕성한 유기물질분해가 일어나고, 이 과정에서 수초의 성장, 동물플랑크톤의 증식 등 새로운 수생태계가 조성된 것으로 사료된다.

Keywords

References

  1. 권오병. 1999. 인공식물 설치한 호소의 수질개선 및 생태계 변 화에 관한 연구. 한양대학교대학원 석사학위논문
  2. 김용전, 허재규, 남종현, 김인선, 최경숙, 최승익, 안태석. 2007. 파로호에 설치된 인공식물섬 식생기반재의 공극수에서 세균 분포와 체외효소활성도. 한국미생물학회지 43(1): 40-46
  3. 변명섭. 2007. 팔당호에서 수초재배섬에 의한 수환경 개선효과 에 관한 연구. 강원대학교대학원 이학박사학위논문
  4. 안태석. 1998. 골프장 수질관리를 위한 인공습지 이용에 관한 연구. 재단법인 연강재단
  5. 안태석. 2003. 여재를 이용한 자연순환방식의 수질정화시스템 개발. 강원지역환경기술개발센터
  6. 이광석, 장정렬, 김영경, 박병흔. 1999. 저수지 수질개선을 위한 인공식물섬 조성에 관한 연구. 육수지 22: 219-225
  7. 심두섭, 안태석. 1992. 소양호에서 동물플랑크톤의 섭식작용에 관한 연구. 한국미생물학회지 30(2):129-133
  8. 최승익. 1992. 소양호에서의 유기인산염 분해율에 관한 연구. 강원대학교대학원 이학석사학위논문
  9. 최승익. 1996. 소양호의 세균개체수와 활성도변화에 관한 연구. 강원대학교대학원 이학박사학위논문
  10. 한강수계관리위원회. 2006. 한강수계 생태계 복원방법 및 기술 표준화 연구. 한강수계관리위원회
  11. 환경관리공단. 2000. 수초재배섬 운영결과 보고서. 환경관리공단
  12. APHA. 2001. Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, New York
  13. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer Reil and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263 https://doi.org/10.3354/meps010257
  14. Barman, T.E. 1969. Enzyme Handbook. Springer Verlag. Berlin. 2: 928
  15. Byeon, M.S., J.J. Yoo, O.S. Kim, S.I. Choi and T.S. Ahn. 2002. Bacterial abundances and enzymatic activities under artificial vegetation island in Lake Paldang. Korean J. Limnol. 35(4): 266-272
  16. Chrost, R.J. and H. Rai. 1994. Bacterial secondary production. In: Overbeck, J. and R.J. Chrost (eds.) Microbial ecology of Lake Plussee. Springer_Verlag, N.Y., p. 92- 117
  17. Chrost, R.J. and J. Overbeck. 1990. Substrate-ectoenzyme interaction: Significance of ${\beta}$-glucosidase activity for glucose metabolism by aquatic bacteria. Arch. Hydrobiol. Beih, Ergeb. Limnol. 34: 93-98
  18. Chrost, R.J., W. Siuda, D. Albrecht and J. Overbeck. 1986. A method for determining enzymatically hydrolyzable phosphate (EHP) in natural waters. Limnol. Oceanogr. 31: 662-667 https://doi.org/10.4319/lo.1986.31.3.0662
  19. Chrost, R.J. 1989. Characterization and significance of ${\beta}$- glucosidase activity in lake water. Limnol. Oceanogr. 34: 660-672 https://doi.org/10.4319/lo.1989.34.4.0660
  20. Chrost, R.J. 1994. Microbial enzymatic degradation and utilization of organic matter. In: Overbeck, J. and R.J. Chrost (eds.) Microbial ecology of Lake Plussee. Springer_ Verlag, N.Y., p. 118-174
  21. Currie, D.J., E. Bentzen and J. Kalff. 1986. Does algalbacterial phosphorus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can. J. Fish. Aquat. Sci. 43: 311-318 https://doi.org/10.1139/f86-040
  22. Dahl, H.J. 1972. Untersuchung von Pflanzenarten auf ihre Eignung zum Bau schwimmender Pflanzeninseln. Doktor Dissertation, Technischen Univeritaet Hannover
  23. Ducklow, H.W. and C.A. Carlson. 1992. Oceanic bacterial production. Adv. Microb. Ecol. 12: 113-181
  24. Hernandez, I., F.X. Niell and J.A. Fenandez. 1994. Alkaline phosphatase activity in marine macrophytes: histochemical localization in some widespread species in southern Spain. Marine Biology 120: 501-509 https://doi.org/10.1007/BF00350070
  25. Hobbie, J.E., R.F. Daley and S. Jape. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228
  26. Jansson, M., H. Olsson and K. Peterson. 1988. Phosphatase: Origin, characteristics and function in lake. Hydrobiologia 170: 157-176 https://doi.org/10.1007/BF00024903
  27. McQueen, D.J., J.P. Post and E.L. Mills. 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43: 1571-1581 https://doi.org/10.1139/f86-195
  28. Munster, J. and R.J. Chróst. 1990. Origin, composition and microbial utilization of dissolved organic matter. p. 8- 46. In Aquatic microbial ecology; Biochemical and molecular approaches
  29. Sell, A.F. 1994. Phytoplankton-excreted organic carbon. In: Overbeck, J. and R.J. Chrost (eds.) Microbial ecology of Lake Plussee. Springer-Verlag, N.Y., p. 81-91
  30. Sherr, B.F., E.B. Sherr and C.S. Hopkinson. 1988. Trophic interactions within pelagic microbial communities: indications of feedback regulation of carbon flow. Hydorbiologia 159: 19-26 https://doi.org/10.1007/BF00007364
  31. Wynne, D. 1977. Alterations in acitivity of phosphatases during the Peridinium bloom in Lake Kinneret. Verh. Internat. Verein. Limnol. 21: 523-527
  32. Yokomaku, D., N. Yamaguchi and M. Nasu. 2000. Improved direct viable count procedure for quantitative estimation of bacterial viability in freshwater environments. Appl. Environ. Microbiol. 66: 5544-5548 https://doi.org/10.1128/AEM.66.12.5544-5548.2000