• Title/Summary/Keyword: flight tests

Search Result 437, Processing Time 0.024 seconds

A Study on the Aptitude Test of Helicopter Pilots - Based on the Diagnostic Model - (헬리콥터 조종사의 적성검사에 관한 연구 - 진단 모형을 중심으로 -)

  • Kim, Jong-Pil;Kim, Sang-Chul;Seol, Hyeonju
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.3
    • /
    • pp.74-83
    • /
    • 2020
  • Securing excellent pilots is not only directly linked to the military's improved combat capabilities, but also a way to minimize human and property losses from aircraft accidents. Therefore, a scientific method is needed to diagnose pilot aptitude from the pilot selection process and select those with high accident potential, those who are dropped out of the flight training process, and those who are not suitable for pilot life in advance. Developed countries have implemented pilot aptitude tests to solve these problems early on, but so far, the Korean Army has not introduced a pilot aptitude test system that uses diagnostic tools in the helicopter pilot selection process. Therefore, in this study, scientific diagnostic tools are developed for selecting helicopter pilots, and through this, it is predicted that the number of people who are likely to be dropped out of the training course and who have the potential for accidents will be selected in advance and eliminated in the selection process. In this context, prior research examined the key factors involved in the pilot aptitude test. Through this, the aptitude test items were developed and aptitude tests were conducted on student pilots currently in flight training, and the results of flight training were analyzed.

Temperature and Pressure Measurement on the Flame Deflector during KSLV-I Flight Tests (나로호 비행시험을 통한 화염유도로의 온도 및 압력 측정)

  • Jung, Il-Hyung;Moon, Kyung-Rok;Kang, Sun-Il;An, Jae-Chel;Ra, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.378-384
    • /
    • 2011
  • During the flight test of KSLV-I, various sensors are installed in the launch pad and the flame deflector to measure the flame characteristics and their influences on the launch complex when a launch vehicle lifts off. Parameter Measurement System is responsible for acquiring the above flight test data. The measurement methodology such as the configuration of measurement system, sensor locations and data acquisition procedures are presented. And this paper compares and explains the characteristics of data sets measured during two flight tests.

Mechanical verification logic and first test results for the Euclid spacecraft

  • Calvi, Adriano;Bastia, Patrizia;Suarez, Manuel Perez;Neumann, Philipp;Carbonell, Albert
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2020
  • Euclid is an optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and the formation of structures over cosmological timescales. The Euclid spacecraft mechanical architecture comprises the Payload Module (PLM) and the Service Module (SVM) connected by an interface structure designed to maximize thermal and mechanical decoupling. This paper shortly illustrates the mechanical system of the spacecraft and the mechanical verification philosophy which is based on the Structural and Thermal Model (STM), built at flight standard for structure and thermal qualification and the Proto Flight Model (PFM), used to complete the qualification programme. It will be submitted to a proto-flight test approach and it will be suitable for launch and flight operations. Within the overall verification approach crucial mechanical tests have been successfully performed (2018) on the SVM platform and on the sunshield (SSH) subsystem: the SVM platform static test, the SSH structure modal survey test and the SSH sine vibration qualification test. The paper reports the objectives and the main results of these tests.

The understanding of the Longitudinal Static Stability Flight Test (종축 정안정성 비행시험기법 이해)

  • Lee, Ju-Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.142-147
    • /
    • 2007
  • When the aircraft is developed, several flight tests are performed including stability and controllability, performance and systems, above all the most important part of the flight test is stability test. Stability test is divided into two parts, static stability and dynamic stability. Static stability of the aircraft is typically defined in terms of its initial tendency to return to equilibrium after a disturbance and not included time concept. One of static stability, longitudinal static stability, was addressed here. The longitudinal static stability was studied from the basic theory to the flight test method and also explained data reduction method throughout the flight test. Finally showed how to meet the specifications such as ROC, FAR and MIL-specifications.

  • PDF

Test Setup for Flight Sensor Dynamics and Compensation of Time-delayed Position Output (비행 센서의 동특성 측정과 위치 출력의 시간 지연 보상)

  • Park, Sang-Hyuk;Lee, Sang-Hyup
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.16-20
    • /
    • 2010
  • The dynamic characteristics of flight sensors is obtained by a simple method that deploys a pendulum with a rotary encoder. The encoder output is used with kinematic relations to derive reference signals for various flight sensors, including position, velocity, attitude, and angular rate sensors as well as accelerometer and magnetic sensors. A time delay of 0.4 seconds is found in the position output of the flight sensor under investigation. A logic to compensate for the time delay using a velocity information is proposed and validated in flight tests.

Development of FAA AC120-40B Level D Flight Dynamics Model for T-50 Full Mission Trainer (FAA AC120-40B Level D급 T-50 전술훈련 시뮬레이터)

  • Jeon, Dae-Keun;Lee, Se-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2006
  • FAA AC120-40B Level D flight dynamics model for T-50 Full Mission Trainer was successfully developed. Since AC120-40B Level D requires the quantitative validation tests for simulation model compared with flight test data, T-50 flight test data for each validation test item was gathered, and also automatic test environments which include AFT (Automatic Fidelity Tester) and STA (Simulation Test Analyzer) were developed. The final test results after the iterative test-tuning processes were all within the tolerances specified in AC120-40B Level D. Qualification Test Guide, QTG contains the detail test processes and results.

  • PDF

Implementation of Automatic Target Tracking System for Multirotor UAVs Using Velocity Command Based PID controller (속도 명령 기반 PID 제어기를 이용한 멀티로터 무인항공기의 표적 자동 추종 시스템 구현)

  • Jeong, Hyeon-Do;Ko, Seon-Jae;Choi, Byoung-Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.321-328
    • /
    • 2018
  • This paper presents an automatic target tracking flight system using a PID controller based on velocity command of a multirotor UAV. The automatic flight system includes marker based onboard target detection and an automatic velocity command generation replacing manual controller. A quad-rotor UAV is equipped with a camera and an image processing computer to detect the marker in real time and to estimate the relative distance from the target. The marker tracking system consists of PID controller and generates velocity command based on the relative distance. The generated velocity command is used as the input of the UAV's original flight controller. The operation of the proposed system was verified through actual flight tests using a marker on top of a moving vehicle and tracks it to successfully demonstrate its capability using a quad-rotor UAV.

A Study on the Flight Initiation Wind Speed of Wind-Borne Debris (강풍에 의한 비산물의 비행 시작 풍속에 관한 연구)

  • Jeong, Houigab;Lee, Seungho;Park, Junhee;Kwon, Soon-duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.105-110
    • /
    • 2020
  • This study provides a method and data for predicting the flight initiation wind speed of wind-borne debris. From the force equilibrium acting on debris including aerodynamic and inertia forces, the equation for predicting the flight initiation wind speeds are presented. Wind tunnel tests were carried out to provide necessary aerodynamic data in the equation for the debris with various aspect ratios. The proposed equation for flight initiation wind speeds was validated from free flying tests in the wind tunnel. The flights of debris were mostly initiated by slip when width to thickness was less than 10, otherwise overturning were dominant. The actual flight initiation speeds were lower than that of the computed ones. The surface boundary layer flow and the gap between the debris and surface might affect the prediction error.

Flight Dynamic Identification of a Model Helicopter using CIFER®(I) - Flight test for the acquisition of transmitter input data - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (I) - 조종기 제어 입력 데이터 획득을 위한 비행시험 -)

  • Park, Hee-Jin;Koo, Young-Mo;Bae, Yeoung-Hwan;Oh, Min-Suk;Yang, Chul-Oh;Song, Myung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.467-475
    • /
    • 2011
  • Aerial spraying technology using a small unmanned helicopter is an efficient and practical tool to achieve stable agricultural production to improve the working condition. An attitude controller for the agricultural helicopter would be helpful to aerial application operator. In order to construct the flight controller, a state space model of the helicopter should be identified using a dynamic analysis program, such as CIFER$^{(R)}$. To obtain the state space a model of the helicopter, frequency-sweep flight tests were performed and time history data were acquired using a custom-built stick position transmitter. Four elements of stick commands were accessed for the collective pitch (heave), aileron (roll), elevator (pitch), rudder (yaw) maneuvers. The test results showed that rudder stick position signal was highly linear with rudder input channel signal of the receiver; however, collective pitch stick position signal was exponentially manipulated for the convenience of control stick handling. The acquired stick position and flight dynamic data during sweep tests would be analyzed in the followed study.

Flight Test of Propulsion System for Verifying Engine/Aircraft Compatibility of T-50 Advanced Trainer (T-50 고등 훈련기 엔진/기체 적합성 검증을 위한 추진계통 비행시험)

  • Lee, Sang-Hyo;Jeong, In-Myon;Jung, Joo-Hyun;Shim, Jae-Kwang;Kang, Sung-Soo;Park, Sung-Hwan;Han, Byoung-Hak;Moon, Hyung-Rae;Cha, Jae-Byoung;Lee, Boo-ll
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.948-956
    • /
    • 2007
  • It is important during FSD(Full Scale Development) period to verify whether the aircraft system function meets the aircraft requirements and functional performance. Especially, the functionality of the integrated propulsion system should be verified to evaluate the compatibility with aircraft. Various flight tests such as the engine airstart test, the engine horsepower extraction test, the backup throttle functionality test had been performed to evaluate the engine/aircraft compatibility with T-50 during FSD period. Through such flight tests, it was confirmed that the propulsion system of T-50 was properly designed and installed to the aircraft. This paper shows description on each flight test item, test procedure and test results. It is expected that this paper could be a reference for preparing the propulsion flight test in other aircraft developments.