• Title/Summary/Keyword: flight tests

Search Result 441, Processing Time 0.027 seconds

Study on the Hovering Flight Performance of a Single Rotor on a River Surveillance Hexacopter (하천 측량용 헥사콥터의 단일로터에 대한 제자리 비행 성능 연구)

  • Jeong, Won-hoon;Kim, Bong-hwan;Min, Kyoung-moo;Chia, Allie;Park, Geun-woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an experimental device was fabricated to evaluate the hovering flight performance of a single rotor on a hexacopter used for river surveillance, and a thrust performance test was conducted. In addition, the 3D profile of the propeller was extracted by 3D scanning and CFD analysis was performed using ANSYS CFD 14.5 based on the extracted 3D model of the propeller. The aerodynamic characteristics were compared with the results of the performance tests and CFD analysis, and the vortex structure corresponding to each motor rotational speed in revolutions per minute (rpm) was identified. In the future, we plan to provide valuable data for multicopter propeller design and performance verification.

Development of Full-Scale Static Test System for Aircraft Sensor Pod (항공용 센서 포드의 정적 구조시험장비 개발)

  • Jae Myung Cho;Hoon Hyuk Park;Won Woong Lee;Jong In Bae;Han Sol Lee;Eui Hwan Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • For aviation sensor pod, structural integrity should be verified through static structural tests for flight loads induced in various maneuvering conditions of the aircraft. For this, it is necessary to develop a test system for full-scale static load test of sensor pod. Based on test requirements, this paper introduced a test system configuration of the static test and the development of test structure frame, restraints equipment, loading equipment, control, and measurement equipment. In addition, methods and procedures for verifying the developed test system were explained. In conclusion, the static load test and data acquisition were successfully performed. Reliability of the test equipment was also verified in the process.

Study on the Small Airplane Noise Certification and the Means of Compliance through the Flight Test (소형비행기 소음인증 및 비행시험을 통한 검증방안 연구)

  • Choi, Joo-Won;Kee, Ye-ho;Kim, Seungkeun;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.694-701
    • /
    • 2018
  • Civil aircraft noise certification standard is based on the ICAO Annex 16 Vol. 1. And, the standard uses A-Weighted SPL, EPNL and SEL method depending on the aircraft category. Korean noise standards, KAS 36 and other nation's CS 36 and FAR 36 noise standards were developed and revised according to the international noise standards, ICAO Annex 16. And, the national noise requirements are equivalent each other. The small airplane noise certification requires only take-off noise level with A-Weighted SPL in dB(A) unit. The first Korean aircraft noise certification was performed for the KC-100 certification in August 2012 with Korean authority and U.S. FAA. The noise certification requires much knowledge and experience in flight tests and noise data processing. In this study, the noise test requirements, test conditions and data correcting methods are shown with the test examples.

Development of Micro Rocket Using Mechanical Micro Machining (기계식 마이크로 가공을 이용한 마이크로 로켓의 개발)

  • Baek,Chang-Il;Chu,Won-Sik;An,Seong-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.32-37
    • /
    • 2003
  • The trend of miniaturization has been applied to the research on micro rockets resulting in prototype rockets fabricated by MEMS processes. In this paper, the development of three-dimensional micro rockets using micro milling as well as the results of combustion and flight tests are discussed. The body of rocket was made of 6061 aluminum cylinder. The three-dimensional micro nozzles were fabricated on brass by micro endmill with 127${\mu}m$ diameter. Two different micro nozzles were fabricated, one with 1.0mm of throat diameter and the other with 0.5mm. The total mass of rocket was 7.32g and that of propellant was 0.65g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle form the ground resulted in 46m-53m of horizontal flight distance

Conceptual Design and Development Test of an Unmanned Scaled-down Quad Tilt Prop PAV (쿼드 틸트 프롭형 PAV 무인 축소모델 개념설계 및 개발시험)

  • Byun, Young-Seop;Song, Jun-Beom;Kim, Jae-Nam;Jeong, Jin-Suk;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • This paper describes the conceptual design and development test procedure of a unmanned scaled-down personal air vehicle(PAV) with drive and flight dual mode capability. Trade studies on operational requirements led to the suggestion of a quad tilt prop platform which has nacelle tilt capability with multi rotor configuration. Motors for propeller propulsion and driving mechanism were integrated into a single nacelle, then they were implemented by nacelle tilt mechanism for conversion between the drive and the flight modes. Primary design parameters and initial specifications were confirmed through conceptual design, then functional tests were performed with the test platforms for the drive and the flight modes.

Captive Flight Test POD System Design for Effective Development in Weapon System (무기체계의 효과적인 개발을 위한 항공탑재시험용 POD 시스템 설계)

  • Park, JungSoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.25-31
    • /
    • 2018
  • Captive Flight Test (CFT) is one of the most important tests to acquire data when developing complex weapon systems. In this paper, we introduce the design and test result of our POD system for CFT. POD system uses POD set which consists of left and right POD. The exterior and mass properties of POD set are equal to those of fuel tank for aircraft so that we can omit Airworthiness Certification. Also, we adequately placed inner-equipments in order to acquire data including target image, navigation result and reference data to verify and analyse software algorithm. The POD system for CFT we developed is complex system as both mechanical and electronic factors are applied. As we repeatedly performed CFT, useful and various data for weapon development were acquired.

Development of Operational Flight Program for Stores Management Computer (무장관리컴퓨터 탑재소프트웨어 개발)

  • Lee, Sang Cheol;Kim, In Gyu;Kim, Yeong Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.124-133
    • /
    • 2003
  • We propose an application of the Object-Oriented design methodology to develop operational flight program(OFP) for stores management computer(SMC) which manages and controls stores inventory, stores activation, launch for missiles, and release of the conventional weapons. For the development of SMC, a military version of PowerPC 603e is used as a central processing unit board and VxWorks real-time operating system is used. The Tornado software development environment(SDE) and the programming language Ada95 are used for OFP development. We design three layerd in the OFP for the independency of the software modules. An avionics system computer(ASC) simulator and a test bench are developed for the SMC integration test and verification test. And the tests are rigorously and successfully conducted.

Development of an ACMI Simulator Based on LVC Integrating Architecture (LVC 통합 아키텍처 기반 실기동급 ACMI 모의기 개발)

  • Jang, Youngchan;Oh, Jihyun;Myung, Hyunsam;Kim, Cheonyoung;Hong, Youngseok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • This paper describes development contents and flight tests of an ACMI simulator based on LVC integrating architecture. ACMI is the system that provides air combat training and ground bombing training for improving fighting efficiency, that is the live simulation involving real people to operate real systems. ACMI simulator was developed for technic acquisition of LVC interoperability by using data link communication. ACMI simulator simulated maneuvering of a fighter by operating an UAV, a fighter can be distinguished from an UAV by maneuvering characteristics. This study proposes maneuvering simulation method by using flight data of the UAV, and performed its flight test for verifying similarity of fighter maneuvering.

Air Transport Rack Design and Temperature Test Study for UAV (무인항공기용 ATR 설계 및 온도시험에 관한 연구)

  • Kim, Sung-Su;Kim, Do-Yul;Choi, Kee-Young;Park, Choon-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.253-259
    • /
    • 2007
  • Standard design and suitable environmental test method should be applied to increase the reliability of UAV flight control systems. UAV flight control systems under development domestically have enough capabilities for complicated missions. However, most low cost systems are not designed with concepts of compatibility, adaptability, and environmental compliance. This paper explains ATR(Air Transport Rack) standard that is widely used on aircraft. The paper presents a design uses commercial off-the-shelf parts. The paper also presents various environmental standards for airborne equipments, including U.S. military specifications. The developed FCS was tested under these specifications. The paper shows the test procedures and results.

Study on Static Pressure Error Model for Pressure Altitude Correction (기압 고도의 정밀도 향상을 위한 정압 오차 모델에 관한 연구)

  • Jung, Suk-Young;Ahn, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • In GPS/INS/barometer navigation system for UAV, vertical channel damping loop was introduced to suppress divergence of the vertical axis error of INS, which could be reduced to the level of accuracy of pressure altitude measured by a pitot-static tube. Because static pressure measured by the pitot-static tube depends on the speed and attitude of the vehicle, static pressure error models, based on aerodynamic data from wind tunnel test, CFD analysis, and flight test, were applied to reduce the error of pressure altitude. Through flight tests and sensitivity analyses, the error model using the ratio of differential pressure and static pressure turned out to be superior to the model using only differential pressure, especially in case of high altitude flight. Both models were proposed to compensate the effect of vehicle speed change and used differential and static pressure which could be obtained directly from the output of pressure transducer.