• Title/Summary/Keyword: flight software

Search Result 357, Processing Time 0.026 seconds

Cost-Effective High-Altitude Scientific Balloon Development and its Flight Test (비용효율적인 고고도 과학기구 개발 및 비행시험)

  • Kang, Jungpyo;Shim, Gyujin;Kim, Hweeho;Lee, Yongseon;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • The high altitude scientific balloon has been used for decades in advanced aerospace countries such as United States, France, and Japan to carry out various research objectives. Since the initial cost for development and operation is enormous, it has been conducted by national research institutes. Recently, the advent of open source software/hardware ecosystems with low-cost yet high-performance have lowered barriers to enter into scientific balloon research and development. In this study, a zero pressure balloon prototype was designed considering the cost, usability, compatibility, and development period by using commercial off the shelf (COTS) items. In addition, the flight operation experience was accumulated through eight times of the flight tests, and operational reliability of the balloon system was verified. Finally, the foundation for the operation of the large zero pressure balloon was established.

Development of Embedded Program for UAV Flight Control System using RTOS and Model-Based Auto Code Generation (모델기반 자동코드 생성과 실시간 운영체제 기반 무인기용 비행제어시스템 탑재 프로그램 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Kim, Sung-Su;Ryoo, Chang-Kyung;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.979-986
    • /
    • 2011
  • In this paper, an embedded program of a flight control system for a small high performance UAV is introduced. The program consists of modules for device management and guidance and control. The device management system handles navigation sensors and mission equipments. The program for the guidance and control system is used to accomplish various kinds of missions and realize automation of flight control. Driver programs embedded in the device management system for operation of sensors and external devices are based on Texas Instrument's DSP/BIOS RTOS(realtime operating system). The on-board programs for the guidance and control system is obtained by using the model-based auto code generation technology.

Research on the Design and Evaluation of a Control Loading System for Flight Simulator (비행 시뮬레이터용 조종력 재현 장치 설계 및 시험연구)

  • Lee, Chan-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.95-100
    • /
    • 2004
  • This paper represents the development of a CLS(Control Loading System) for a target a airplane (KT-1) with mechanical linkage reversible flight control system. The system is composed of mechanical frame, controller, sensing part to measure the force from the stick, driving system generating the reaction forces. The DS1103 DSP(Digital Signal Processor) of the dSpace Corp. was used as the controller. The control algorithm of the CLS and the operational environment including monitoring software and evaluation tools are described. The evaluation of the system was conducted according to the requirement specification. The results of the test were analyzed by comparing with the actual data of the target airplane.

Flight Range and Time Analysis for Classification of eVTOL PAV (eVTOL PAV 유형별 항속거리 및 항속시간 분석)

  • Lee, Bong-Sul;Yun, Ju-Yeol;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.73-84
    • /
    • 2020
  • To overcome ground congestions due to growing number of cars, a lot of companies have proposed personal aerial vehicle (PAV). Among PAV, electric vertical take-off and landing (eVTOL) aircrafts capable of vertical take-off and landing with electric power are drawing attention, and their configurations vary from multicopters to tilt ducted fans. This study tries to analyze the characteristics of each eVTOL design configurations. Parasite drag was calculated using component build up method for Vahana, Aurora, Volocopter representing each eVTOL PAV type of tilt-wing, compound, and multicopter. Wetted area and induced drag was calculated using OpenVSP and XFLR5 that are aircraft design and aerodynamic analysis software. The batteries used in the eVTOL PAV was assumed as Tesla 2170 batteries and flight ranges were calculated. Also, energy consumption and maximum flight time for the given mission profile including take-off and landing, cruising segments were compared for each eVTOL.

A Series of Process of Electrical Integration and Function Test for Flight Model of STEP Cube Lab. (큐브위성 STEP Cube Lab. 비행모델의 전자조립 및 기능시험 과정)

  • Jeong, Hyeon-Mo;Chae, Bong-Geon;Han, Sang-Hyuck;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.814-824
    • /
    • 2016
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to find space core technologies researched at domestic industry or university and to verify these technologies on mission orbit. To implement this objective, system level electrical integration and function test (EIT) by using developed flight software were performed in compliance with system requirements. And the effectiveness of the flight model (FM) was verified through launch and thermal vacuum test at acceptance level. This paper will introduce a series of process of electrical function tests for FM EIT, launch and thermal vacuum tests.

Synchronization Method Design of Redundant Flight Control Computer for UAV (무인기를 위한 이중화 비행제어컴퓨터의 동기화 설계)

  • Lee, Young Seo;Kang, Shin Woo;Lee, Hee Gon;Ahn, Tae-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.273-279
    • /
    • 2021
  • A flight control computer(FLCC) applied to an unmanned aerial vehicle(UAV) is a safety-critical item, and which is designed in a multiple structure to increase the reliability of operation by securing fault tolerance. These FLCC of multiple structure should be designed so that each independent processing/control components can perform the same operation at the same time. And for this reason, a synchronization algorithm for synchronizing the operation between FLCCs should be included in an operational flight program. In this paper, we propose a software design method for synchronization between dual FLCCs applied to UAVs. The proposed synchronization method is designed to synchronize using only the minimum hardware resources to reduce a failure rate. In addition, the proposed synchronization method is designed to minimized synchronization errors due to a timer operation by designing in consideration of operation characteristics of the hardware timer used for the synchronization.

Development and Verification of Active Vibration Control System for Helicopter (소형민수헬기 능동진동제어시스템 개발)

  • Kim, Nam-Jo;Kwak, Dong-Il;Kang, Woo-Ram;Hwang, Yoo-Sang;Kim, Do-Hyung;Kim, Chan-Dong;Lee, Ki-Jin;So, Hee-Soup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-192
    • /
    • 2022
  • Active vibration control system(AVCS) for helicopter enables to control the vibration generated from the main rotor and has the superb vibration reduction performance with low weight compared passive vibration reduction device. In this paper, FxLMS algorithm-based vibration control software of the light civil helicopter tansmits the control command calculated using the signals of the tachometer and accelerometers to the circular force generator(CFG) is developed and verified. According to the RTCA DO-178C/DO-331, the vibration control software is developed through the model based design technique, and real-time operation performance is evaluated in PILS(processor in-the loop simulation) and HILS(hardware in-the loop simulation) environments. In particular, the reliability of the software is improved through the LDRA-based verification coverage in the PIL environments. In order to AVCS to light civil helicopter(LCH), the dynamic response characteristic model is obtained through the ground/flight tests. AVCS configuration which exhibits the optimal performance is determined using system optimization analysis and flight test and obtain STC certification.

Development of symbol generator software (심볼 생성기용 소프트웨어 개발)

  • Park,Deok-Bae;Lee,Jae-Eok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.94-102
    • /
    • 2003
  • This paper describes the development and implementation for the SYMBOLGEN(SYMBOL GENerator) software. The SYMBOL-GEN software is for improving graphic processing speed and decreasing data communication load in ASC by genera ting and downloading off-line symbol file for HUD and MFD , which are the main display equipments in military aircraft. The SYMBOL-GEN is developed on PC using C++ language and MS Visual Studio 6.0 development tool. It is also designed to be modified and extended easily by introducing object-oriented software development technique.

Software Design for Aerodynamics Simulation similar to actual Aircraft (항공기 유사게임의 공기역학모의 소프트웨어 설계)

  • Kim, Hyo-Kwan;Choi, Young-Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.556-561
    • /
    • 2015
  • The actual aircraft flight training can be done, throw this platform. this paper focuses on identifying the functions with respect to software components in the development of a aerodynamics system, which is based on the functions necessary to develop the real environment aircraft system. It also design activity diagram, concept as well as class diagram. This paper presents the main features and direction of aircraft to be equipped in the future gaming platforms. By designing a pilot platform updates that allow for new aircraft models students can understand exactly what they want and aircraft. this study presents a use case based on the aerodynamic simulation CSU concept to execution.

Integrated System of Multiple Real-Time Mission Software for Small Unmanned Aerial Vehicles (소형 무인 항공기를 위한 다중 실시간 미션 소프트웨어 통합 시스템)

  • Jo, Hyun-Chul;Park, Keunyoung;Jeon, Dongwoon;Jin, Hyun-Wook;Kim, Doo-Hyun
    • Telecommunications review
    • /
    • v.24 no.4
    • /
    • pp.468-480
    • /
    • 2014
  • The current-generation avionics systems are based on a federated architecture, where an electronic device runs a single software module or application that collaborates with other devices through a network. This architecture makes the internal system architecture very complicate, and gives rise to issues of Size, Weight, and Power (SWaP). In this paper, we show that the partitioning defined by ARINC 653 can efficiently deal with the SWaP issues on small unmanned aerial vehicles, where the SWaP issues are extremely severe. We especially install the integrated mission system on real hexacopter and quadcopter and perform successful flight tests. The presented software technology for integrated mission system and software consolidation methodology can provide a valuable reference for other SWaP sensitive real-time systems.