• Title/Summary/Keyword: flight control system

Search Result 892, Processing Time 0.028 seconds

Analysis on Flight Test Results of Reconfiguration Flight Control System (재형상 비행제어 시스템의 비행시험 결과 분석)

  • Min, Byoung-Mun;Kim, Seong-Pil;Kim, Bong-Ju;Kim, Eung-Tai;Tahk, Min-Jea
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1244-1252
    • /
    • 2008
  • This paper presents the analysis results obtained by the flight test of reconfiguration flight control system for an aircraft. The reconfiguration flight control system was designed by using control allocation scheme that automatically distributes the demanded control moments determined by control law to each actual control surface. In this paper, some control allocation algorithms for reconfiguration control of general aircraft with redundant control surfaces are summarized and their performance evaluation results through nonlinear simulation and Hardware-In-the-Loop-Simulation (HILS) test are shown. Also, Unmanned Aerial Vehicle (UAV) system adopted as a platform for the flight test of reconfiguration flight controller and the implementation procedure of reconfiguration flight controller into real-time UAV system were introduced. Finally, flight test results were analyzed.

Flight Control System Design and Verification Process (비행제어시스템 설계 및 검증 절차)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.824-836
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, flight control systems are necessary to stabilize an unstable aircraft, and provides adequate handling qualities and achieve performance enhancements. Standard FCSDVP (Flight Control System Design and Verification Process) is provided to reduce development period of the flight control system. In addition, if this process is employed in developing flight control system, it reduces the trial and error for development and verification of flight control system. This paper addresses the flight control system design and verification process for the RSS aircraft utilizing design goal based on military specifications, linear and nonlinear system design and verification based on universal software, handling quality test based on HILS(Hardware In-the-Loop Simulator) environment, and ground and flight test results to verify aircraft dynamic flight responses.

Development of Low-Cost Automatic Flight Control System for Unmanned Target Drone

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.367-371
    • /
    • 2004
  • This paper describes development of automatic flight control system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated now days use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of automatic flight control system is verified by flight test.

  • PDF

A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law (제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Shin, Ji-Hwan;Park, Sang-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

Development of a UAV Flight Control System Using a Low Cost GPS/IMU (저가형 GPS/IMU를 이용한 UAV 비행 제어 시스템 개발)

  • Koo, Won-Mo;Chun, Se-Bum;Won, Dae-Hee;Kang, Tae-Sam;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.502-510
    • /
    • 2008
  • UAVs(Unmanned Aerial Vehicles) have many applications in military and commercial areas. The flight control system of UAVs is more important than manned aircraft's because the mission of UAVs must be operated without a human pilot. But very heavy and expensive navigation system makes it difficult to develop UAV flight control system. In this research, GPS/IMU integrated navigation filter was developed for light weight/low cost flight control system of small UAVs. With this navigation filter, full flight control system which has real time operating capability has been developed. The performance of the flight control system is basically checked by HILSIM (Hardware In the Loop SIMulation). Finally, the flight control system is verified by showing performance test result under real flight environment.

Development of Flight Control Laws for the T-50 Advanced Supersonic Jet Trainer

  • Kim, Chong-Sup;Hur, Gi-Bong;Hwang, Byung-Moon;Cho, In-Je;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.32-45
    • /
    • 2007
  • The T-50 advanced supersonic jet trainer employs the Relaxed Static Stability (RSS) concept to improve the aerodynamic performance while the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 flight control laws employ a proportional-plus-integral type controller based on a dynamic inversion method in longitudinal axis and a proportional type controller based on a blended roll system with simple roll rate feedback and beta-betadot feedback system. These control laws are verified by flight tests with various maneuver set flight envelopes and the control laws are updated to resolve flight test issues. This paper describes several concepts of flight control laws used in T-50 to resolve those flight test issues. Control laws for solving the roll-off problem during pitch maneuver in asymmetric loading configurations, improving the departure resistance in negative angle of attack conditions and enhancing the fine tracking performance in air-to-air tracking maneuvers are described with flight test data.

A Model of a Mechanical Flight-Control System for Simulating Control Authority Switching of a Helicopter Technical Demonstrator (헬리콥터 기술시범기의 비행제어 조종권 전환 모의를 위한 기계식 조종장치 모델 설계 연구)

  • Yang, Chang Deok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Since the flight-control system is critical for the safety of an aircraft, a fail-safe system is needed in a flight demonstrator used to test a new flight-control system. A backup control system is also needed to ensure safety in using a mechanical flight-control system. This paper presents a development of an MFCS (Mechanical Flight Control System) model for simulating control authority switching of a helicopter technical demonstrator, as well as the results of evaluating the developed MFCS model.

An Adaptive Flight Control Law Design for the ALFLEX Flight Control System

  • Imai, Kanta;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.5-148
    • /
    • 2001
  • In this report, an adaptive flight control law based on a linear-parameter-varying (LPV) model is presented for a flight control system. The control system is designed to track an output of a vehicle to a reference signal from the guidance system, which generates a reference flight path. The proposed adaptive control law adjusts the controller gains continuously on line as flight conditions change. The obtained adaptive controller guarantees global stability over a wide flight envelope. Computer simulation involving six-degree-of-freedom nonlinear flight dynamics is applied to Japan´s automatic landing flight experimental vehicle (ALFLEX) to examine the effectiveness of the proposed adaptive flight control law.

  • PDF

A study on the design of ALFLEX flight control system

  • Imado, Fumiaki;Yuasa, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.219-222
    • /
    • 1996
  • Authors ahve developed ALFLEX simulation program which can implement the flight simulation ad control system design of ALFLEX efficiently by using aerodynamic data provided by NAL/NASDA. Then we have designed and example of flight path and altitude control system of ALFLEX. The philosophy of the design method is explained in detail, and a flight simulation result is shown, which verifies the fine performance of the system.

  • PDF

Design of a Variable Stability Flight Control System

  • Park, Sung-Su;Ko, Joon-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • A design objective for variable stability flight control system is to develop a controller of in-flight simulation capability that forces the aircraft being flown to follow the dynamics of other aircraft. This paper presents a model-following variable stability control system (VSS) for in-flight simulation which consists of feedforward and feedback control laws, the aircraft dynamic model to be simulated, and switching and fader logics to reduce the transient effect between two aircraft dynamics. The separate design techniques for feedforward and feedback control law proposals are based on model matching and augmented linear quadratic (LQ) techniques. The system allows pilots to select and engage VSS mode, and when deselected, the aircraft reverts to the baseline flight control system. Both the baseline flight control laws and VSS control laws are computed continuously during flight. Initialization of the state values are necessary to prevent instability, since VSS control laws have integrators and filters in longitudinal, and lateral/directional axes. This paper demonstrates and validates the effectiveness and quality of VSS with F-16 models embedded in T-50 in-flight simulation aircraft.