• 제목/요약/키워드: flexure performance

검색결과 223건 처리시간 0.025초

요 모션 갠트리 제어 시 공기베어링 스테이지의 리플 보상 (Ripple Compensation of Air Bearing Stage upon Gantry Control of Yaw motion)

  • 안다훈;이학준
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.554-560
    • /
    • 2020
  • 평판 디스플레이 제조 공정에서 대상물의 위치 결정을 위해 고정밀 평면 모션 스테이지를 사용한다. 이 유형의 스테이지는 일반적으로 마찰이 없는 선형 모터와 에어 베어링을 사용하며, 고정밀 위치 센서로 레이저 간섭계를 사용한다. 스테이지의 불가피한 기생 운동에 의해 야기되는 요 모션 오차는 위치 결정 대상체의 향 변화를 의미하므로, 스테이지의 성능과 공정 정밀도 향상을 위해 요 모션 오차의 실시간 동적 보정은 매우 중요하다. 요 모션 오차 보상에는 갠트리 제어가 일반적이며, 이 방법을 공기베어링 가이드를 사용하는 스테이지에 적용하기 위해서 회전 모션을 허용하는 유연기구가 스테이지에 적용된다. 본 논문은 공기베어링과 유연기구를 갖춘 H형 XY 스테이지의 정속 구동 성능을 개선하는 방법을 제안한다. 유연기구를 포함한 스테이지의 갠트리 제어 시 선형 모터로부터 발생하는 상호 리플의 발생 원인을 분석하고, 이러한 상호 리플을 보상하는 방안으로 적응 학습 제어를 제시한다. 제시 방안의 검증을 위해 시뮬레이션을 수행하여, 보상 제어를 통해 속도 리플이 약 22 % 수준으로 감소함을 확인하였다. 그리고 요 모션 오차가 발생하는 스테이지 상태를 가정하여 리플 저감 효과를 검증하였다.

Centrifuge modelling of temporary roadway systems subject to rolling type loading

  • Lees, Andrew S.;Richards, David J.
    • Geomechanics and Engineering
    • /
    • 제3권1호
    • /
    • pp.45-59
    • /
    • 2011
  • Scaled centrifuge modelling techniques were used to study the soil-structure interactions and performance of a jointed rollable aluminium roadway (or trackway) system on soft clay under light truck tyre loads. The measured performance and subsequent analyses highlighted that the articulated connections significantly reduced the overall longitudinal flexural stiffness of the roadway leading to stress concentrations in the soil below the joints under tyred vehicle loadings. This resulted in rapid localised failure of the supporting soil that in turn led to excessive transverse flexure of the roadway and ultimately plastic deformations. It is shown that the performance of rollable roadway systems under tyred vehicle trafficking will be improved by eliminating joint rotation to increase longitudinal stiffness.

초정밀 3축 이송 스테이지의 개발 :2. 동특성 실험 및 성능 평가 (Development of a 3-axis fine positioning stage : Part 2. Experiments and performance evaluation)

  • 강중옥;김만달;백석;한창수;홍성욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1207-1210
    • /
    • 2003
  • This paper deals with experiments for dynamic characteristics and performance evaluation of the 3-axis fine positioning stage developed in [1]. The features of the developed fine positioning stage are the long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design. The dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the actuator and the stage design. Performance evaluation is also made for the PZT actuators as well as the stage positioning accuracy. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning.

  • PDF

커튼 월에 적용하는 플랙시블 태양전지의 모양에 따른 성능 비교 (Comparison of Performance of Flexible Solar Cells construction applied to Curtain Walls)

  • 김재진
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.163-168
    • /
    • 2018
  • In this paper presents comparison of performance of flexible solar cells construction applied to curtain walls. The proposed paper compares power generation for curtain walls of various shapes using flexible PV. Through the comparison of performance, the power generation was compared by installing various types of flexible PV on the air layer of double windows. By comparing the measured power generation, it is possible to find an optimal flexible PV shape that can be applied to a curtain wall. Flexible PV installation was divided into diagonal, S and W shapes. As a result of comparison, the amount of power generation when there was no flexure of flexible PV was large. Also, as the angle with the light source increased, the power generation decreased. Therefore, it is necessary to study the structure which can fix the PV more than the flexible PV and to be able to direct the sun without distortion.

Nonlinear seismic performance of code designed perforated steel plate shear walls

  • Barua, Kallol;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.85-98
    • /
    • 2019
  • Nonlinear seismic performances of code designed Perforated Steel Plate Shear Walls (P-SPSW) were studied. Three multi-storey (4-, 8-, and 12-storey) P-SPSWs were designed according to Canadian seismic provisions and their performance was evaluated using time history analysis for ground motions compatible with Vancouver response spectrum. The selected code designed P-SPSWs exhibited excellent seismic performance with high ductility and strength. The current code equation was found to provide a good estimation of the shear strength of the perforated infill plate, especially when the infill plate is yielded. The applicability of the strip model, originally proposed for solid infill plate, was also evaluated for P-SPSW and two different strip models were studied. It was observed that the strip model with strip widths equal to center to center diagonal distance between each perforation line could reasonably predict the inelastic behavior of unstiffened P-SPSWs. The strip model slightly underestimated the initial stiffness; however, the ultimate strength was predicted well. Furthermore, applicability of simple shear-flexure beam model for determination of fundamental periods of P-SPSWs was studied.

치환율에 따른 순환골재 콘크리트의 구조성능 분석 (Evaluations of Structural Performance of Recycled Aggregate Concrete According to Replacement Ratios)

  • 남진원;김호진;김성배;김장호;변근주
    • 한국건설순환자원학회논문집
    • /
    • 제3권1호
    • /
    • pp.54-64
    • /
    • 2007
  • This study is a fundamental research in order to establish the design code of recycled aggregate concrete structure. The structural properties of recycled aggregate concrete such as flexure, shear, fatigue, compression, and bond development are experimentally investigated and confirmed. In this study, laboratory-scale reinforced concrete beam, column, and pull-out test specimens using recycled coarse aggregate are manufactured. Then, the structural performances of recycled aggregate concrete according to replacement ratios of recycled coarse aggregate are evaluated. Also, finite element analysis using commercial code DIANA is carried out to predict the test results and the analysis results are compared with test results in this study. Structural test results showed that the structural performances of recycled aggregate concrete specimens with 60% replacement ratio are reduced by approximately 15-20%. These results indicated that the replacement ratio of recycled coarse aggregate within 30% is a suitable to use for structural members. The results of finite element analysis showed that the specimens with 30% replacement ratio possessed similar or more excellent structural performance than normal concrete specimens. However, recycled aggregate concrete with 60% replacement ratio of recycled coarse aggregate must be carefully considered for structural applications due to significant decrease of the failure loads.

  • PDF

형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구 (Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71%)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.102-111
    • /
    • 2022
  • 본 논문의 목적은 팔각형 중공단면 철근콘크리트 교각의 내진성능을 평가하고 축방향철근비가 파괴거동에 미치는 영향을 분석함에 있다. 축소모형 팔각형 중공단면 기둥 실험체 4개를 제작하여 일정한 축력 하에서 반복 횡하중을 가력하는 실험을 수행하였다. 모든 실험체의 횡방향 나선철근 체적비는 0.206%로 일정하고 축방향철근비는 2.36 ~ 4.71%이다. 파괴거동과 내진성능을 분석하였고 겹침이음 실험체를 제외한 3개의 실험체는 최종단계에서 휨-전단 파괴거동을 보였다. 겹침이음 실험체를 제외한 실험결과에서 변위연성도와 누적 에너지소산 능력이 축방향철근비에 반비례하여 감소하는 경향을 나타내었다.

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

구조역학적 성능을 고려한 마이크로 열변형 액추에이터의 최적설계 (Design Optimization of Micro Thermal Actuator Considering Structural Performance)

  • 황경호;이종수
    • 정보저장시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.6-12
    • /
    • 2008
  • The paper deals with the numerical analysis and design optimization of polysilicon micro thermal flexure actuator. The deflection of a thermal actuator is implicitly related to the actuation time so that such deflection is to be maximized under the consideration of structural performances such as maximum stress and natural frequencies. At first, the structural formulation of a thermal actuator is reviewed, and its CAE based simulation is performed to verify the numerical model. A parametric study is then conducted to identify the mainly effective design variables. Finally, the design of a micro thermal actuator is explored in the context of deterministic optimization and reliability based design optimization in the present study.

  • PDF

Damage Detection at Welded Joint of Two-Dimensional Plane Model

  • Chung, Chang-Yong;Eun, Hee-Chang;Seo, Eun-Kyoung
    • Architectural research
    • /
    • 제13권4호
    • /
    • pp.53-60
    • /
    • 2011
  • Damage detection algorithms based on a one-dimensional beam model can detect damage within a beam span caused by flexure only but cannot detect damage at a joint with prescribed boundary conditions or at the middle part of a beam section where the neutral axis is located. Considering the damage at a welded joint of beam elements in steel structures and modeling the damage with twodimensional plane elements, this study presents a new approach to detecting damage in the depth direction of the joint and beam section. Three damage scenarios at the upper, middle, and lower parts of a welded joint of a rectangular symmetric section are investigated. The damage is detected by evaluating the difference in the receptance magnitude between the undamaged and damaged states. This study also investigates the effect of measurement locations and noise on the capability of the method in detecting damage. The numerical results show the validity of the proposed method in detecting damage at the beam's welded joint.