• 제목/요약/키워드: flexure performance

검색결과 223건 처리시간 0.026초

하이브리드 콘크리트 보수재료의 휨부착 성능평가 (Evaluation of Flexural Bond Performance of Hybrid Concrete Repair Materials)

  • 김경태;김상준;박홍기;최영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.176-181
    • /
    • 2018
  • 콘크리트 구조물은 시공 후 다양한 원인에 의해 물리적, 화학적 변형을 통해 물리적인 성능이 저하된다. 이러한 콘크리트 구조물의 성능저하는 사용수명을 감소하기 때문에 합리적인 보수보강이 필요하다. 최근 콘크리트 구조물의 효율적인 보수을 위해, 부착성능을 향상시킨 하이브리드 보수재료에 대한 연구가 활발히 수행되어오고 있다. 본 연구에서는 기존콘크리트와의 부착성능 및 수밀성을 향상시키기 위해 초속경 시멘트에 PVA 분말수지, 나일론 섬유, 라텍스를 혼입 한 하이브리드 보수재를 개발하였다. 보수재료의 성능평가를 위해 압축강도, 건조수축, 부착강도 실험을 수행하였다. 또한 미리 손상이 발생한 시험체를 제작한 후 보수 전후의 휨부착 성능평가를 수행하였다. 휨강도 평가결과, 기존의 초속경시멘트만 혼입한 시험체를 제외한 모든 실험체에서 110%~150%정도 휨강도가 크게 나타났고, 휨강도에 의해 발생된 균열패턴은 모든 실험체가 기존 콘크리트와 일체 거동하는 것으로 나타났다.

Study on mechanical performance of composite beam with innovative composite slabs

  • Yang, Yong;Yu, Yunlong;Zhou, Xianwei;Roeder, Charles W.;Huo, Xudong
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.537-551
    • /
    • 2016
  • A new type of composite beam which consists of a wide flange steel shape beam and an innovative type of composite slab was introduced. The composite slab is composed of concrete slab and normal flat steel plates, which are connected by perfobond shear connectors (PBL shear connectors). This paper describes experiments of two large-scale specimens of that composite beam. Both specimens were loaded at two symmetric points for 4-point loading status, and mechanical behaviors under hogging and sagging bending moments were investigated respectively. During the experiments, the crack patterns, failure modes, failure mechanism and ultimate bending capacity of composite beam specimens were investigated, and the strains of concrete and flat steel plate as well as steel shapes were measured and recorded. As shown from the experimental results, composite actions were fully developed between the steel shape and the composite slab, this new type of composite beams was found to have good mechanical performance both under hogging and sagging bending moment with high bending capacity, substantial flexure rigidity and good ductility. It was further shown that the plane-section assumption was verified. Moreover, a design procedure including calculation methods of bending capacity of this new type of composite beam was studied and proposed based on the experimental results, and the calculation methods based on the plane-section assumption and plastic theories were also verified by comparisons of the calculated results and experimental results, which were agreed with each other.

에너지 소산능력을 고려한 전단벽의 내진설계 (Earthquake Design Method for Structural Walls Based on Energy Dissipation Capacity)

  • 박홍근;엄태성
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.25-34
    • /
    • 2003
  • 최근 능력스펙트럼법, 직접변위기초설계법 등과 같은 성능에 기초한 내진 평가/설계법이 개발되어 사용되고 있다. 이들 방법은 구조물의 비선형 주기거동에 의한 에너지 소산능력을 고려함에 있어 부정확한 경험식에 의존하는 한계를 보이고 있다. 한편, 최근 연구에서 휨지배 철근콘크리트 부재에 대하여 여러 설계변수의 영향을 고려하여 주기거동에 의한 에너지 소산능력을 정확히 평가할 수 있는 방법이 개발되었다. 본 연구에서는 에너지 소산능력을 고려한 내진설계법에 대한 기초적인 연구로서, 최근 연구에서 개발된 에너지 소산능력 산정법을 이용한 철근콘크리트 전단벽 구조의 내진설계법을 개발하여, 기존의 내진설계법과 비교하였다. 제안된 설계법에서는 단면의 크기 및 형상, 축력, 철근비, 배근형태, 연성도 등과 같은 다양한 설계변수에 따른 에너지 소산능력의 변화를 정확히 고려하여 설계할 수 있다.

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Investigation on physical and mechanical properties of manufactured sand concrete

  • Haoyu Liao;Zongping Chen;Ji Zhou;Yuhan Liang
    • Advances in concrete construction
    • /
    • 제16권4호
    • /
    • pp.177-188
    • /
    • 2023
  • In the context of the shortage of river sand, two types of manufactured sand (MS) were used to partially replace river sand (RS) to design manufactured sand concrete (MSC). A total of 81 specimens were designed for uniaxial compression test and beam flexure test. Two parameters were considered in the tests, including the types of MS (i.e. limestone manufactured sand (LMS), pebble manufactured sand (PMS)) and the MS replacement percentage (i.e., 0%, 25%, 50%, 75%, 100%). The stress-strain curves of MSC were obtained. The effects of these parameters on the compressive strength, elastic modulus, peak strain, toughness and flexural strength were discussed. Additionally, the sensitivity of particle size distributions to the performance of MSC was evaluated based on the grey correlation analysis. The results showed that compared with river sand concrete (RSC), the rising slope of the stress-strain curves of limestone manufactured sand concrete (LMSC) and pebble manufactured sand concrete (PMSC) were higher, the descending phrase of LMSC were gentle but that of PMSC showed an opposite trend. The physical and mechanical properties of MSC were affected by the MS replacement percentage except the compressive strength of PMSC. When the replacement percentage of LMS and PMS were 50% and 25% respectively, the corresponding performances of LMSC and PMSC were better. In generally, when the replacement percentage of LMS and PMS were same, the comprehensive performance of LMSC were better than that of PMSC. The constitutive model and the equations for mechanical properties were proposed. The influence of particle ranging from 0.15 mm to 0 mm on the performance of MSC was lower than particle ranging from 4.75 mm to 0.15 mm but this influence should not be ignored.

GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구 (Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials)

  • 정진우;김영빈;이재홍
    • 한국강구조학회 논문집
    • /
    • 제17권3호통권76호
    • /
    • pp.337-346
    • /
    • 2005
  • 승용차 전용 조립식 고가도로 상부구조에 복합재료 바닥판을 적용하기 위하여 두 개의 사각형으로 이루어진 단위 모듈 단면이 개발되었으며, 설계된 단위 모듈 단면에 대해 두 가지의 적층형태로 각각 설계를 하여 성능을 비교하였다. 단위 모듈 및 2 연속 모듈 그리고 단위 모듈 5개를 접착제를 이용하여 부착한 바닥판 시스템에 대해 휨 거동 특성을 분석하고 설계하중 및 극한하중에 대한 바닥판의 사용성 및 구조안전성을 분석하기 위한 실험을 DBT와 LT로 설계된 실험체에 대해 각각 실시하였다. 또한 ABAQUS를 이용한 수치해석 결과와 실험 결과를 비교 분석하였으며, 실험 장치 및 방법과 파괴하중 및 파괴형상 등의 실험결과를 상세히 나타내었다. 구조실험결과 개발된 복합재료 바닥판은 승용차 전용 고가도로 바닥판으로 사용하기에 충분한 적용성과 효용성이 있음이 입증되었다.

초정밀 마이크로 위치결정 스테이지의 제작 및 평가 (Experiment of the Precision micro-positioning stage)

  • 한창수;백석;노명규;이찬홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.244-247
    • /
    • 2002
  • The performance of the precision micro-positioning 4-dof stage is presented. The compact design utilizes the monolithic mechanism to achieve the translation in the Z axis and rotation in the $\theta$ z, $\theta$ x and $\theta$ y axes with high stiffness and high damping. Hysteresis, nonlinearity, and drift of the piezoelectric effects are improved by incorporating the sensors in a feedback control. Experiments demonstrate that the micro-positioning stage is capable of 2nm resolution over the travel range of 25$\mu\textrm$ m in the Z axis, 0.0l7 $\mu\textrm$ rad resolution over the 170$\mu\textrm$ rad in the $\theta$ z and 0.011 $\mu\textrm$ rad resolution over the $\mu\textrm$ rad in the $\theta$ x and $\theta$ y axes. The cross-axis interferences among the axes are at a noise range. This stage is available for positioning error compensation of the XY stage with large stroke.

  • PDF

고자장 수·변전 설비에서의 적외선 카메라용 반사경 설계 (Design of a Reflector Mirror for Infrared Camera in the High Magnetic Field of Power System)

  • 배영철
    • 한국전자통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.255-260
    • /
    • 2014
  • 최근에 열화상 카메라는 수 변전 설비의 열화 상태를 진단하는데 많이 사용하고 있다. 그러나 자장이 높은 곳에서는 열화상 카메라의 전자부가 높은 자장으로 인하여 제대로 동작하지 못하는 문제점이 발생한다. 이를 해결하기 위해 일반적으로 반사경을 사용할 수 있으나 반사경의 휨 등에 의해 반사 성능이 떨어지는 문제점이 있다. 본 논문에서는 이러한 문제점을 극복하기 위하여 아크릴 판에 알루미늄을 코팅하여 설계한 후 이를 제작하여 측정의 오차를 줄이고 측정 효율을 높이는 방법을 제시한다.

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns

  • Xue, J.Y.;Chen, Z.P.;Zhao, H.T.;Gao, L.;Liu, Z.Q.
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.473-487
    • /
    • 2012
  • An experimental study was performed to investigate the seismic performance of steel reinforced concrete (SRC) special-shaped columns. For this purpose, 17 steel reinforced concrete special-shaped column specimens under low-cyclic reversed load were tested, load process and failure patterns of the specimens with different steel reinforcement were observed. The test results showed that the failure patterns of these columns include shear-diagonal compression failure, shear-bond failure, shear-flexure failure and flexural failure. The failure mechanisms and characteristics of SRC special-shaped columns were also analyzed. For different SRC special-shaped columns, based on the failure characteristics and mechanism observed from the test, formulas for calculating ultimate shear capacity in shear-diagonal compression failure and shear-bond failure under horizontal axis and oblique load were derived. The calculated results were compared with the test results. Both the theoretical analysis and the experimental results showed that, the shear capacity of T, L shaped columns under oblique load are larger than that under horizontal axis load, whereas the shear capacity of +-shaped columns under oblique load are less than that under horizontal axis load.