• 제목/요약/키워드: flexural-flow

검색결과 150건 처리시간 0.025초

재유화형 분말수지 개질 초미립자 시멘트계 균열주입재의 특성 (Properties of fine type cement grouts modified with redispersible polymer powder)

  • 이철웅;최낙운;김병철;양석우;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.727-730
    • /
    • 2004
  • The purpose of this study is to evaluate the fundamental properties of fine type cement grouts with redispersible polymer powders. Cement grouts with redispersible polymer powders are prepared with various polymer-cement ratios, and tested. for flow, water absorption, drying shrinkage, flexural and compressive strengths. From the test results, flow of the cement grouts with EVA and Va/VeoVa polymer powers decreased with increasing elapsed time. Regardless of polymer type, the flexural strength of the cement grouts tends to increase with increase in polymer-cement ratio. The maximum compressive strengths of the cement grouts are obtained at a polymer-cement ratio of $5\%$.

  • PDF

콘크리트 보수용 라텍스 개질 시멘트계 보수 재료의 특성 (Performance of Latex Modified Cementitious Repair material for Concrete Structures)

  • 이상우;박성기;성상경;이재영;김완영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.289-292
    • /
    • 2006
  • The purpose of this study was to evaluate a performance of latex-modified repair material applied to the substrate concrete. The experimental variables were latex-cement ratios (5, 10, 15%), polymer(0.5%, 1%) and admixtures. The flow, air content, compressive strength, flexural strength were tested. Test results showed that compressive and flexural strength decreased by adding hydroxyethyl cellulose and increasing water-binder ratio. The compressive and flexural strength were increased when addition of defoamer.

  • PDF

복합 폴리머를 이용한 시멘트 페이스트의 기초적 특성 (Fundamental Properties of Cement Paste Using Complex Polymer)

  • 최중구;이건철;이건영;조인성
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.124-125
    • /
    • 2014
  • Polymer concrete has more excellent durability, tensile strength, flexural strength and waterproof performance mechanically than normal concrete, and as it mixes as a polymer binding material, it can reduce the cement use amount. This study reviews fundamental properties of cement material mixed with complex polymer. As a result of this study, as percentage of complex polymer mix increases, flow value will decrease so that liquidity and compression strength will decrease. On the other hand, in case of flexural strength, when the mixture is 10%, it increases significantly more than OPC.

  • PDF

온도에 따른 콘크리트 구조체 단면 보수용 폴리머 모르타르의 기초적 연구 (Fundamental Study of Polymer-modified Cement Mortar for Maintenance in Concrete Structure According to Ambient Temperature)

  • 서정필;김재원;이정구;최훈국;강철;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.59-62
    • /
    • 2007
  • Nowadays, polymer-cement mortars are widely used in construction field(floorings and pavements, water-proofings, adhesives, repair materials, deck coverings, anti-corrosive linings) Because of excellent performance such as high tensile and flexural strength, waterproofness, excellent adhesion, good durability, improved wear and chemical resistances. This article presents the results of experimental study that investigates the effect of ambient temperature on the strength properties of polymer-modified cement mortar. Results show that when increasing the polymer proportion in mortar on different ambient temperature, the compressive strength and flexural strength are decreased, and also alkali resistance is decreased.

  • PDF

첨가제의 조성이 폐유리-점토 타일의 곡강도에 미치는 영향 (Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies)

  • 이영일;엄정혜;김영욱;송인혁
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.416-422
    • /
    • 2013
  • Cullet-loess tile bodies are successfully fabricated using cullet, loess, hollow microspheres, and sintering additives (borosilicate glass frit, boric acid, or fumed silica) as starting materials. The effects of the additive composition and sintering temperature on the sintered density and flexural strength of the cullet-loess tile bodies are investigated. The sintered density of the cullet-loess tile bodies increases with an increase in the sintering temperature as a result of the enhanced densification of pore walls through the viscous flow of a liquid phase formed from the glass frit and sintering additives. The flexural strength of the cullet-loess tile bodies increases with increases in the sintering temperature and the cullet content in the starting composition. A maximal flexural strength of 40 MPa is obtained in cullet-loess tile bodies sintered with glass frit at $800^{\circ}C$ in air.

Flexural/shear strength of RC beams with longitudinal FRP bars An analytical approach

  • Kosmidou, Parthena-Maria K.;Chalioris, Constantin E.;Karayannis, Chris G.
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.573-592
    • /
    • 2018
  • An analytical methodology for the calculation of the flexural and the shear capacity of concrete members with Fibre-Reinforced-Polymer (FRP) bars as tensional reinforcement is proposed. The flexural analysis is initially based on the design provisions of ACI 440.1R-15 which have properly been modified to develop general charts that simplify computations and provide hand calculations. The specially developed charts include non-dimensional variables and can easily be applied in sections with various geometrical properties, concrete grade and FRP properties. The proposed shear model combines three theoretical considerations to facilitate calculations. A unified flexural/shear approach is developed in flow chart which can be used to estimate the ultimate strength and the expected failure mode of a concrete beam reinforced with longitudinal FRP bars, with or without transverse reinforcement. The proposed methodology is verified using existing experimental data of 138 beams from the literature, and it predicts the load-bearing capacity and the failure mode with satisfactory accuracy.

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

3종의 간접수복용 복합레진의 굴곡강도 비교 및 표면관찰 (Evaluation of Flexural strength and surface porosity of three indirect composite resins)

  • 김준태;박진영;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제39권1호
    • /
    • pp.9-16
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate flexural strength, composite surface and fractured surface of three different indirect composite resins. Methods: Fifteen bar-shaped specimens ($25mm{\times}2mm{\times}2mm$) were fabricated for each FL group (Flow type and Light curing) and PLP group (Putty type and Light, Pressure curing) and PL group (Putty type and Light curing) according to manufacturer's instructions and ISO 10477. Fabricated specimens were stored in the distilled water for 24 hours at the temperature of $37^{\circ}C$. Three-point bending strength test was performed to measure flexural strength using universal testing machine at a crosshead speed of 1mm/min (ISO 10477). Surface and fractured surface of specimens were observed by digital microscope. Results were analyzed with Kruskal-wallis tests (${\alpha}=0.05$). Results: Mean (SD) of three different indirect composite resins were 83.38 (6.67) MPa for FL group, 139.90(16.53) MPa for PLP group and 171.72(16.74) MPa for PL group. Flexural strength were statistically significant (p<0.05). Differences were not observed at fractured surface among three groups. However, many pores over $100{\mu}m$ were observed at PL group in observing surface of specimen. Conclusion: Flexural strength of composite resins was affected by second polymerization method and content of inorganic filler.

전달행렬법을 이용한 3차원 파이프 계의 진동해석 (Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method)

  • 이동명
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

올소 크레졸 노볼락 에폭시 수지 연화점 변화에 따른 에폭시 몰딩 컴파운드의 물성 변화 (The Change of Physical Properties of Epoxy Molding Compound According to the Change of Softening Point of ο-Cresol Novolac Epoxy Resin)

  • 김환건;류제홍
    • 대한화학회지
    • /
    • 제40권1호
    • /
    • pp.81-86
    • /
    • 1996
  • 반도체를 보호하기 위하여 사용하는 반도체 성형 재료로, 현재 주로 사용되고 있는 Epoxy Molding Compound(EMI)의 주성분인 올소 크레졸 노볼락 에폭시 수지의 특성과 성형 재료의 관계를 조사하기 위하여 올소 크레졸 노볼락 에폭시 수지의 분자량과 깊은 관련이 있는 수지의 연화점 변화에 따른 EMC의 물성변화를 살펴보았다. 사용된 epoxy 수지의 연화점은 각각 65.1$^{\circ}C$, 72.2$^{\circ}C$, 83.0$^{\circ}C$ 인 3종을 사용하였으며 연화점 변화에 따른 EMC의 물성변화를 살펴보기 위하여 기계적 물성으로 굴곡 강도와 굴곡탄성율을, 열적 특성 변화를 관찰하기 위하여 열팽창 계수와 열전도도 그리고 유리 전이온도를 각각 측정하였다. 그리고 성형 특성과의 관계를 살펴보기 위하여 스피랄 플로우(Spiral Flow)를 측정하였다, 연화점이 증가함에 따라 굴곡 탄성율과 유리상에서의 열팽창 계수(${\alpha}_1$), 그리고 열전도도는 거의 변화가 없었으나 유리전이온도는 연화점 증가에 따라 증가함을, 스피랄 플로우는 연화점 증가에 따라 감소함을 보여주었다. 이는 에폭시 수지의 분자량이 증가함에 따라 가교밀도가 증가하는 현상에 기인한다고 판단된다. 고무상에서의 여팽창 계수(${\alpha}_2$)와 굴곡강도의 경우는 전이점을 보여주고 있는데, 이는 수지점도 증가에 따른 충전제의 분산성에 기인한 것으로 판단된다.

  • PDF