• Title/Summary/Keyword: flexural wave

Search Result 117, Processing Time 0.026 seconds

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

Evaluation on Rear Fracture Reduction and Crack Properties of Cement Composites with High-Velocity Projectile Impact by Fiber Types (섬유 종류에 따른 시멘트복합체의 고속 비상체 충격에 대한 배면파괴저감 및 균열특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • Cement composites subjected to high-velocity projectile shows local failure and it can be suppressed by improvement of flexural toughness with reinforcement of fiber. Therefore, researches on impact resistance performance of cement composites are in progress and a number of types of fiber reinforcement are being developed. Since bonding properties of fiber with matrix, specific surface area and numbers of fiber are different by fiber reinforcement type, mechanical properties of fiber reinforced cement composites and improvement of impact resistance performance need to be considered. In this study, improvement of flexural toughness and failure reduction effect by impact of high-velocity projectile have been evaluated according to fiber type by mixing steel fiber, polyamide, nylon and polyethylene which are have different shape and mechanical properties. As results, flexural toughness was improved by redistribution of stress and crack prevention with bridge effect of reinforced fibers, and scabbing by high-velocity impact was suppressed. Since it is possible to decrease scabbing limit thickness from impact energy, thickness can be thinner when it is applied to protection. Scabbing of steel fiber reinforced cement composites was occurred and it was observed that desquamation of partial fragment was suppressed by adhesion between fiber and matrix. Scabbing by high-velocity impact of synthetic fiber reinforced cement composites was decreased by microcrack, impact wave neutralization and energy dispersion with a large number of fibers.

A Study on the Behavior of Ultrasonic Guided Wave Mode in a Pipe Using Comb Transducer (Comb Transducer를 이용한 파이프 내 유도초음파 모드의 거동에 관한 연구)

  • Park, Ik-Keun;Kim, Yong-Kwon;Cho, Youn-Ho;Ahn, Yeon-Shik;Cho, Yong-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.142-150
    • /
    • 2004
  • A preliminary study of the behavior of ultrasonic guided wave mode in a pipe using a comb transducer for maintenance inspection of power plant facilities has been verified experimentally. The mode identification has been carried out in a pipe using the time-frequency analysis methods such as the wavelet transform(WT) and the short time Fourier transform (STFT), compared with theoretically calculated group velocity dispersion curves for longitudinal and flexural modes. The results are in good agreement with analytical predictions and show the effectiveness of using the time-frequency analysis method to identify the individual modes. It was found out that the longitudinal mode(0,1) is less affected by mode conversion compared with the other modes. Therefore, L(0,1) is selected as an optimal mode for the evaluation of the surface defect in a pipe.

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

Pipeline defect detection with depth identification using PZT array and time-reversal method

  • Yang Xu;Mingzhang Luo;Guofeng Du
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.253-266
    • /
    • 2023
  • The time-reversal method is employed to improve the ability of pipeline defect detection, and a new approach of identifying the pipeline defect depth is proposed in this research. When the L(0,2) mode ultrasonic guided wave excited through a lead zirconate titinate (PZT) transduce array propagates along the pipeline with a defect, it will interact with the defect and be partially converted to flexural F(n, m) modes and longitudinal L(0,1) mode. Using a receiving PZT array attached axisymmetrically around the pipeline, the L(0,2) reflection signal as well as the mode conversion signals at the defect are obtained. An appropriate rectangle window is used to intercept the L(0,2) reflection signal and the mode conversion signals from the obtained direct detection signals. The intercepted signals are time reversed and re-excited in the pipeline again, result in the guided wave energy focusing on the pipeline defect, the L(0,2) reflection and the L(0,1) mode conversion signals being enhanced to a higher level, especially for the small defect in the early crack stage. Besides the L(0,2) reflection signal, the L(0,1) mode conversion signal also contains useful pipeline defect information. It is possible to identify the pipeline defect depth by monitoring the variation trend of L(0,2) and L(0,1) reflection coefficients. The finite element method (FEM) simulation and experiment results are given in the paper, the enhancement of pipeline defect reflection signals by time-reversal method is obvious, and the way to identify pipeline defect depth is demonstrated to be effective.

Single Frequency Analysis of Flexural Vibration of Thin Plate by Using the Ray Tracing Method (레이추적기법을 이용한 평판 횡진동의 단일주파수 해석)

  • Chae Ki-Sang;Ih Jeong-Guon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.267-270
    • /
    • 2000
  • 강제가진을 받는 진동장은 직접장과 반사장으로 이루어진다. 직접장은 무한구조요소가 점입력을 받을 때의 해와 같으며, 반사장은 직접장에 의해 발생되는 1차 반사파 및 추가로 발생하는 무수한 반사파들의 합으로 나타낼 수 있다. 본 논문에서는 점가진을 받는 유한한 평판의 단일 주파수 해석을 수행하기 위한 레이추적기법을 연구하였다. 이를 위해, 직접장은 고주파수 가정을 이용하여 원형전달파로 근사화하고. 이 원헝전달파를 다수의 파동관 (wave tube)으로 이산화하였다. 균일한 경계조건과 무시할 만큼의 미약한 굴절효과를 가정하고 경계에서의 정반사 (specular reflection)만을 고려하여, 경계에서의 입사파동관. 전달 및 반사파동관의 기하학적 관계를 제안하였다. 이들 파동관이 평판 내부를 진행하면서 관측점에 미치는 영향들을 합성하여 비교적 정확한 강제진동응답을 얻을 수 있음을 단일 평판의 예제를 통하여 확인할 수 있었다 그러나, 연성된 평판의 경우에는 다소 부정확한 결과를 얻었다.

  • PDF

Dynamic analysis of maritime gasbag-type floating bridge subjected to moving loads

  • Wang, Huan-huan;Jin, Xian-long
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.137-152
    • /
    • 2016
  • This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE) method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the natural frequencies and flexural mode shapes were analyzed. Based on the initial state analysis, the dynamic responses of the floating bridge subjected to different moving loads were investigated. Vertical displacements and radial deformations of gasbags under different loads were compared, and principal stress distributions of gasbags were researched while driving. The hinge forces between adjacent modules were calculated to ensure the connection strength. Besides, the floating bridge under wave impacting was analyzed. Those results can provide references for the analysis and design of this new floating bridge.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • Kil, H.G.;Choi, J.S.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.301-308
    • /
    • 2000
  • The power flow analysis(PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrry direction. The energy governing equations for longitudinal, shear and flexural waves were solved to predict the vibrational energy density and intensity. The wave transmission approach was used to consider the mode conversion at the joints of the coupled plates. Numerical results for energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Development of PFFEM, the new vibroacoustic analysis system in medium-to-high frequency ranges (중고주파에서의 새로운 진동해석시스템, PFFEM 개발연구)

  • Seo, Seong-Hoon;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.325-333
    • /
    • 2000
  • To predict vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. Using the developed PFFEM program the energy density and intensity of the submarine and automobile shape structures are predicted with a harmonic point force at a single frequency.

  • PDF

Vibration Power Flow Analysis of Submarine-shaped Structures using Developed Software

  • Seo, Seong-Hoon;Hong, Suk-Yoon
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • For the analysis of vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, A software based on the Power Flow Analysis(PFA) has been developed for the plate elements. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-coupled plates are fully developed. Also, the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. To confirm the validity of the developed PFA software, the submarine-shaped complex structures are used for the analysis of vibration intensity and energy density.