• Title/Summary/Keyword: flexural stresses

Search Result 159, Processing Time 0.021 seconds

Additional Stresses in Flange Frame of Tube Structures under Lateral Loading (수평하중을 받는 튜브 구조물의 플랜지에 작용하는 부가 응력)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.317-322
    • /
    • 2001
  • A mathematical modelling technique is proposed for estimating the additional bending stresses of tube(s)-in-tube structures due to tube-tube interaction, which has a significant effects on the shear-lag phenomenon. The proposed method simulates the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. Hence, the tube(s)-in-tube structure can be analysed by using an analogy approach where each tube is individually modelled by a continuous beam that can account for the flexural and shear deformations as well as the shear-lag effects. The numerical analysis is applicable for the structural analysis of framed-tube structures with single and multiple internal tubes, as well as those without internal tubes. The shear-lag phenomenon of such structures is studied with additiona] bending stresses and shear-lag reversal points.

  • PDF

Sensitivity Analysis for Flexural Behaviors of PSC Members (프리스트레스트 콘크리트 휨 부재의 민감도 해석)

  • Lee, Jon-Ja;Lee, Bong-Goo;Kim, Min-Joo;Lee, Yong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.183-194
    • /
    • 2002
  • A general procedure to evaluate the sensitivity of design variables to stresses and strains in PSC flexural members is proposed. To accomplish the purpose of this study, long-term losses including creep, shrinkage, and PS steel relaxation are formulated based on the equilibrium states of the deformed sectional geometry. Thereby, the formulation follows the basic steps which consider the fundamental formulas adopted by CEB-FIP, ACI, and KCI rather than the age adjusted effective modulus concept. Twenty-one design variable including the material and geometrical properties of concrete, nonprestressing steel and prestressing steel, and the geometry of the cross section are considered in the sensitivity analysis. The gradients of the stresses and strains needed for the sensitivity assessment are calculated in a closed format. The derived formulation is applied to the T-type section PSC beam with prestressing and nonprestressing steels for the sensitivity analysis. The analytically calculated sensitivity results are compared with those numerically calculated to ensure the validity of the proposed procedure.

Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.141-156
    • /
    • 2019
  • This paper presents the flexural behaviour of stainless steel beam-to-tubular column joints with extended endplates subjected to static loading. Moment-rotation relationships were investigated numerically by using Abaqus software with geometric and material nonlinearity considered. The prediction of damages among components was achieved through ductile damage models, and the influence of initial geometric imperfections and residual stresses was evaluated in large fabricated stainless steel joints involving hollow columns and concrete-filled columns. Parametric analysis was subsequently conducted to assess critical factors that could affect the flexural performance significantly in terms of the initial stiffness and moment resistance. A comparison between codes of practice and numerical results was thereafter made, and design recommendations were proposed for further applications. Results suggest that the finite element model can predict the structural behaviour reasonably well with the component damage consistent with test outcomes. Initial geometric imperfections and residual stresses are shown to have little effect on the moment-rotation responses. A series of parameters that can influence the joint behaviour remarkably include the strain-hardening exponents, stainless steel strength, diameter of bolts, thickness of endplates, position of bolts, section of beams and columns. AS/NZS 2327 is more reliable to predict the joint performance regarding the initial stiffness and moment capacity compared to EN 1993-1-8.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading (휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델)

  • Chae, Young-Suk;Tae, Ghi-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.

Strain-Based Shear Strength Model for fiber Reinforced Concrete Beams (섬유보강 콘크리트 보를 위한 변형 기반 전단강도모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K.
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.911-922
    • /
    • 2005
  • A theoretical study was performed to investigate the behavioral chracteristics and shear strength of fiber reinforced concrete slender beams. In the fiber reinforced concrete beam, the shear force applied to a cross section of the beam was resisted by both compressive zone and tensile zone. The shear capacity of the compressive zone was defined addressing the interaction with the normal stresses developed by the flexural moment in the cross section. The shear capacity of the tensile zone was defined addressing the post-cracking tensile strength of fiber reinforced concrete. Since the magnitude and distribution of the normal stresses vary according to the flexural deformation of the beam, the shear capacity of the beam was defined as a function of the flexural deformation of the beam. The shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed method was developed as a unified shear design method which is applicable to conventional reinforced concrete as well as fiber reinforced concrete.

Flexural Behavior of Steel Composite Beam with Built-up Cross-section Considering Bolt Deformation (볼트의 변형을 고려한 강재 조립 합성보의 휨거동)

  • Kim, Sung-Bo;Kim, Hun-Kyom;Jung, Kyoung-Hwan;Han, Man-Yop;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • The analysis and results of flexural behavior for steel composite beam with built-up cross-section considering bolt deformation are presented in this paper. The bolt deformation and the restrict effect due to bolt-connection and friction are considered to investigate the flexural behavior of steel composite beam. Nonlinear spring element in ABAQUS is used to consider bolt deformation, also the results are compared with those in case bolt deformations are ignored. The displacement, bending stresses and shear stresses are calculated by F.E. model, and these results are compared with the analytical value of no interaction beam, partial interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel. When the composite rate is more than 50%, the behavior of composite beam considering the effects of bolt deformation is similar to that of fully composite beam.

A Study on the Moment Capacity of H-Section Flexural Members with Local Buckling (국부좌굴이 발생하는 H-형강 휨부재의 강도에 관한 연구)

  • Seo, Gun-Ho;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.647-657
    • /
    • 2011
  • This paper describes the moment capacity of flexural members with local buckling based on a series of FE and experiment results. Thin-walled flexural members undergo local, lateral-torsional, or interactive buckling according to the section geometries and lateral boundary conditions. Flexural members with large width-to-thickness ratios in the flanges or the web may undergo local buckling before lateral-torsional buckling. Local buckling has a negative effect on the flexural strength based on the lateral-torsional buckling of flexural members. This phenomenon should be considered in the estimation of the flexural strength of thin-walled sections. Flexural members with various width-to-thickness ratios in their flanges and web were analyzed. Initial imperfections in the local buckling mode, and residual stresses, were included in the FE analyses. Simple bending moment formulae for flexural members were proposed based on the FE and test results to account for local and lateral-torsional buckling. The proposed bending moment formulae for the thin-walled flexural members in the Direct Strength Method use the empirical strength formula and the grosssection modulus. The ultimate flexural strengths predicted by the proposed moment formulae were compared with the AISC (2005), Eurocode3 (2003), and Korean Highway Bridge Design Specifications (2010). The comparison showed that the proposed bending moment formulae can reasonably predict the ultimate moment capacity of thin-walled flexural members.

Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • In this paper, a general model is developed to predict the distribution of interfacial shear and normal stresses of FG beam reinforced by porous FGM plates under mechanical loading. The beam is assumed to be isotropic with a constant Poisson's ratio and power law elastic modulus through the beam thickness. Stress distributions, depending on an inhomogeneity constant, were calculated and presented in graphicals forms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam, and it is shown that the inhomogeneities play an important role in the distribution of interfacial stresses. The results presented in the paper can serve as a benchmark for future analyses of functionally graded beams strengthened by imperfect varying properties plates. Numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. The results of this study indicated that the imperfect functionally graded panel strengthening systems are effective in enhancing flexural behavior of the strengthened FGM beams. This research is helpful in understanding the mechanical behaviour of the interface and design of hybrid structures.