• Title/Summary/Keyword: flexural strengthening

Search Result 325, Processing Time 0.03 seconds

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

Flexural performance of wooden beams strengthened by composite plate

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.233-259
    • /
    • 2020
  • Using bonded fiber-reinforced polymer laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this research, properties of suitable composite materials (sika wrap), adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates in the stretched part of the wooden beam (lower part in our case), in order to investigate the effectiveness of externally bonding FRP to their soffits. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the wooden beam, the sika wrap composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-wooden hybrid structures. The results showed that the use of the new strengthening system enhances the performance of the wooden beam when compared with the traditional strengthening system.

Experimental Study on the Fatigue Enhancement of RC Beams with Glassfibers (유리섬유보강 RC보의 휨 및 전단 피로성능개선의 실험 연구)

  • 조창백;양정비;정영수;김기봉
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.507-512
    • /
    • 1999
  • In recent years, glassfibers have been used for strengthening in RC structure because of low material cost and easy repairing work. The purpose of this study is to experimentally and analytically investigate the effect of glassfibers for enhancing the capacity of RC flexural beams and shear beams. The experimental result shows that yield and ultimate strength of RC flexural beam with glassfibers are increased by approxiamate 13% and 26%, comparing with those for without glassfibers, and also ultimate strength of RC shear beam with glassfibers are increased by 34%, comparing with those for without glassfibers.

  • PDF

Non-Linear FEM Analysis Study of the Peeling Failure of the RC Beams Strengthened by GFRP (유리섬유쉬트로 휨보강한 보의 박리파괴 거동에 관한 비선형 FEM 해석)

  • 강인석;최기선;유영찬;김긍환;이한승;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.335-338
    • /
    • 2003
  • Flexural test and parametric study by FEM analysis on 6.0m long reinforced concrete beams strengthened by GFRP are reported in these tests. The selected variables are strengthened plate length, plate thickness. The effects of these variables are discussed. The results generally indicate that the flexural strength of strengthened beams is increased. The results of FEM analysis show that the more strengthening GFRP is the more stress of GFRP is decrease when failure mode is peeling failure.

  • PDF

An Experimental Study on the Flexural Strengthening Capacity of the Carbon Fiber Sheet (CFS의 휨보강성능에 관한 실험적 연구)

  • 구은숙;이현호;정하선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.573-578
    • /
    • 1998
  • Recently, the Carbon Fiber Sheet(CFS) is widely used to strengthen the RC beams. But the behaviour of the RC beams which is strengthened with the CFS is not clearly defined yet. So, in this study we experimented with simply supported RC beams strengthened with the CFS, under monotonic loads. We included three parameters in this experiment which are the number of the sheets, the length of the sheets, and the existence of the anchor bolts. We investigated the strength effect of the RC beams by adhesion of the CFS, and the strengthening effect of CFS as to the respective parameters.

  • PDF

Strengthening Effect of Reinforced Concrete Beam at Different Loading Stages (재하상태에 따른 철근콘크리트 보의 보강효과)

  • 이차돈;이학주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.733-739
    • /
    • 1999
  • A theoretical model for flexural behavior of strengthened reinforced concrete beam is developed based on displacement controlled nonlinear finite element method in this study. The developed model is shown to reasonably reproducing the experimental results of variously strengthened reinforced concrete beam. Parametric studies for the strengthened reinforced concrete beam at different loading stages are then performed using this model in order to assess the effect of loading stages at the time of strengthening on characteristic values of strengthened beam under flexure. It was found that depending on loading stages of a beam, deflections at yielding and at ultimate loads are more influenced than corresponding load capacities.

Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams

  • Gamino, Andre Luis;Bittencourt, Tulio Nogueira;de Oliveira e Sousa, Jose Luiz Antunes
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.187-202
    • /
    • 2009
  • This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.

Flexural Rehabilitation Effect of Pre-loaded RC Beams Strengthened by Steel Plate (재하상태에 따른 강판보강공법의 휨 보강효과)

  • 한복규;홍건호;신영수;조하나
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.701-704
    • /
    • 1999
  • The purpose of this study was to investigate the effectiveness of the flexural rehabilitation of the pre-loaded reinforced concrete beams strengthened by the steel plate. Main test parameters were the existence and the magnitude of the pre-loading at the flexural of rehabilitation and the tensile reinforcement ratio of the specimens. Seven beam specimens were tested to investigate the effectiveness of the rehabilitation method. Test results showed that the ultimate load capacities of the pre-loaded specimens were higher than not-pre-loaded specimens at the rehabilitation. The cause of the pharameter was analyzed if is suggested that the bond failure between the concrete and the strengthening steel plate occured prior to the yielding of the tension reinforcement. The member flexural stiffnesses, were similar regardless of the load conditions at retrofit and failure modes showed brittle aspect caused by rip-off failure.

  • PDF

Flexural Behavior of R.C Beams Retrofitted with Hybrid FRP(Fiber Reinforced Polymer) (Hybrid FRP(Fiber Reinforced Polymer)로 보강된 철근 콘크리트 보의 휨거동에 관한 연구)

  • 박은정;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.515-520
    • /
    • 2001
  • This study discusses the flexural performance of rehabilitated composite sections, consisting originally of R/C beams and subsequently strengthened by, Hybrid Fiber Reinforced Polymers(FRPs) and adhesives. Experimentations were peformed with 8 specimens to compare the rehabilitated effect of the length of FRPs, 2plies of FRPs, and 3plies of FRPs. The results show that the increase of the FRP strengthening length is effective on the flexural capacity and strength. Also, R.C beams retrofitted with hybrid FRPs are more effective on the increase of flexural capacity, strength, stiffness, and ductility than with a single kind of FRPs.

  • PDF

An Experimental Study on the Behavior of Carbon Fiber Grid Reinforced Flexural Members (탄소섬유그리드 보강 휨부재의 거동에 대한 실험적 연구)

  • 박제용;안동준;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • In this paper we present tile results of an experimental investigation on the physical and mechanical properties of carbon fiber grid, polymer mortar, and carbon fiber grid reinforced plain concrete flexural members. In order to repairing and reinforcing damaged and/or deteriorated existing concrete structural members, new materials have been developed and utilized in the construction industries. But the physical and mechanical behaviors of the material are not well understood. To use the material effectively various aspects of the material must be throughly investigated analytically as well as experimentally. In this investigation we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are directly utilized in the repair and reinforcement design of damaged or deteriorated concrete structures. In addition, we also investigate the strengthening effect of carbon fiber grid on the plain concrete flexural test specimens. It was found that the material can be used to repair and strengthen the concrete structures effectively.

  • PDF