• Title/Summary/Keyword: flexural strength analysis

Search Result 792, Processing Time 0.025 seconds

An Experimental Study on Flexural Strength of SC Composite Beams Enforced by Unbonded Post Tension (비부착 포스트텐션 SC합성보의 휨내력에 관한 실험적 연구)

  • Kim, Heui Cheol;Ahn, Hyung Joon;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • This study aims to suggest an appropriate flexural reinforcement technique by evaluating the reinforcement capacity of specimens that underwent flexural reinforcement according to the post-tension method with the anchoring position of an unbonded tension member on the conventional SC composite beam and the applied tension level as variables. For the experiment, up to a predetermined yield load was applied to each type of specimen and then, unbounded post-tensioning was additionally conducted to examine its reinforcement capacity. The analysis of the said experiment showed that the post-reinforced SC composite beam was characterized by significantly improved yield stress and initial stiffness, compared with the pre-reinforced one and the experimental measurements/theoretical values of maximum stress ranged from 0.95 to 1.13 following reinforcement. There was little or no change depending on the maximum stress and tension in the specimen (D160, Class 240) whose neutral axis and upper part had anchoring devices mounted prior to reinforcement. Rather, the ductility decreased with the increasing tension. On the contrary, in the case of the other specimen (Class D120) whose neutral axis had anchoring devices mounted after reinforcement, both the maximum stress and ductility increased with increasing tension, which indicates that the latter tension reinforcement was reasonably appropriate and effective for the neutral axis reinforcement.

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

Effect of Normal and Shear Strains in Core Material on Vibrational Characteristics of Aluminum Honeycomb Core Sandwich Plate (심재의 수직 및 전단 변형을 고려한 알루미늄 하니컴코아 샌드위치 평판의 진동특성 해석)

  • 손충열;김익태;변효인
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.89-94
    • /
    • 2000
  • Because the structural elements used in the automobile, astronautic and ship industries are put in dynamic loading environments, much interest is given to the damping of the structural elements, as well as high flexural rigidity and strength per density. Therefore, in this study, the structural damping value of the aluminum honeycomb sandwich plate(AHCP) has been experimentally extracted, and directly applied to the finite element, for the dynamic analysis of the plate considering the structural damping. The analysis results of this theory was compared with the results of the actual modal analysis method. It was observable that the two analyses concurred, establishing the structural damping and analysis method of the AHSP.

  • PDF

Seismic Performance Evaluation of Small-size Pilloti-type Reinforced Concrete Buildings using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 소규모 필로티형 철근콘크리트 건축물의 내진성능평가)

  • Yoo, Changhwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.191-199
    • /
    • 2016
  • Piloti-type building is one of typical vertical atypical buildings. These buildings can fail by weak-story or flexible-story mechanism on the first story. They should be designed by taking into account the special seismic load, but those less than six stories are not required to confirm the seismic performance from structural engineers in Korea. For this reason, small-size pilloti-type RC buildings need to be checked for seismic performance. Based on this background, this study performed nonlinear dynamic analysis using the PERFORM-3D for small-size pilloti-type RC buildings and assessed their seismic performance. Examples are two through four story buildings with and without walls in the first story. The walls and columns in the first story satisfied the target performance in the basic of flexural behavior due to quite a large size and reinforcement. However, wall shear demands exceed shear strength in some buildings. When designed for KBC2009, wall shear strength exceed shear demand in some buildings, but still does not in others. Consequently, wall shear must be carefully checked in both existing and new small-size pilloti-type RC buildings.

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

Studies on the Fire Retardant Treatment of Wet Forming Mat for Hardboard (경질섬유판(硬質纖維板)의 습식(濕式)매트 내화처리(耐火處理)에 관(關)한 연구(硏究))

  • Shin, Dong-So;Lee, Hwa-Hyoung;Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.180-188
    • /
    • 1982
  • This study was carried out to make hardboard fire retardants and to examine the properties of the hard-board treated with them. The fire retardant treatment was achieved by surface impregnation of water soluble retardant chemicals into the forming mat with 55 percent of moisture content. followed by the hot pressing process. Ammonium monophosphate, ammonium diphosphate, sodium borate, and boric acid were used as the fire retardants. Fire retardant test was carried out by using the differential thermal analysis thermogram. The results are summarized as follows: 1. Fire retardant-treated hardboard showed higher values of the specific gravity. water absoption, and flexural strength than those of untreated hardboard. Especially, the treatment of ammonium monophosphate gave the best results in the flexural strength, and a 10 gr/$ft^2$ loading of the fire retardant compound of ammonium monophoshate, ammonium diphosphate, and sodium borate drew the best flexural strength value among the three different experimental loadings of 10, 20 and 30 gr/$ft^2$. 2. There were no definite differences in moisture content between the fire retardant-treated hardboard and the untreated hardboard. 3. The fire retardant compound of ammonium monophosphate, ammonium diphosphate, and sodium borate resulted in the best fire retardancy, and its fire retardancy was increased in proportion to the increase of loading.

  • PDF

Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements (전단스프링과 섬유요소를 이용한 철근콘크리트 전단벽의 비선형 해석모델에 관한 연구)

  • Lee, Kwang-Ho;You, Tae-Sang;Kim, Tae-Wan;Jeong, Seong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.559-566
    • /
    • 2012
  • In this study, fiber elements and a spring are used to build a reinforced concrete shear wall model. The fiber elements and the spring reflect flexural and shear behaviors of the shear wall, respectively. The fiber elements are built by inputting section data and material properties. The spring parameters representing strength and stiffness degradation, pinching, and slip were determined by comparing behaviors of fiber element and VecTor2 results. 'Pinching4' model in OpenSees is used for shear spring. The parameter selecting process for shear spring is a complicated and time consuming process. To study the applicability of the fiber element, reinforced concrete buildings containing a shear wall are evaluated using nonlinear dynamic analysis with various wall aspect ratio (H/L), various beam heights, and stiffness and flexural strength of beam and wall ratios. The aspect ratio of the wall showed distinct difference in IDR (interstory drift ratio) of the models with and without spring. On the other hand, the height of beam and ratio of stiffness and flexural strength of beam and wall did not show clear relation.

Behavior of Wide Beam-Column Interior Joint with Slab (횡력을 받는 넓은 보-기둥 내부 접합부의 거동 평가)

  • Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.433-449
    • /
    • 2012
  • An experimental investigation was conducted to study the behavior of RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were the ratio of column-to-beam flexural capacity ($M_r={\Sigma}M_c/{\Sigma}M_b$ ; 0.77~2.26), ratio of the column-to-beam width (b/H ; 1.54, 1.67). Test results are shown that (1) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column. (2) the presence of a slab have an effect on the performance of the wide beam-high strength concrete column interior joints(type 2). therefore in the design of the wide beam-high strength concrete column interior joints(type 2), the width of slab effective as a T beam flange should be considered. It was show that the case of the ratio of column-to-beam flexural capacity is more than 2.0, the effective width of slab are 2 times of an effective depth of wide beam, however if the ratio of column-to-beam flexural capacity is 1.4~2.0, the effective width of slab are not able to be considered.