DOI QR코드

DOI QR Code

Behavior of Wide Beam-Column Interior Joint with Slab

횡력을 받는 넓은 보-기둥 내부 접합부의 거동 평가

  • 이범식 (한국토지주택공사 토지주택연구원) ;
  • 박성식 (한국토지주택공사 토지주택연구원) ;
  • 박지영 (한국토지주택공사 토지주택연구원)
  • Received : 2012.09.24
  • Accepted : 2012.10.25
  • Published : 2012.10.30

Abstract

An experimental investigation was conducted to study the behavior of RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were the ratio of column-to-beam flexural capacity ($M_r={\Sigma}M_c/{\Sigma}M_b$ ; 0.77~2.26), ratio of the column-to-beam width (b/H ; 1.54, 1.67). Test results are shown that (1) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column. (2) the presence of a slab have an effect on the performance of the wide beam-high strength concrete column interior joints(type 2). therefore in the design of the wide beam-high strength concrete column interior joints(type 2), the width of slab effective as a T beam flange should be considered. It was show that the case of the ratio of column-to-beam flexural capacity is more than 2.0, the effective width of slab are 2 times of an effective depth of wide beam, however if the ratio of column-to-beam flexural capacity is 1.4~2.0, the effective width of slab are not able to be considered.

횡력을 받는 넓은 보와 기둥 내부접합부의 거동을 평가하기 위하여 넓은 보-기둥 접합부의 휨강성비와 유효폭 및 슬래브 유무를 변수로 6개의 1/2축소 모델 실험체를 제작하여 구조성능 평가를 수행하여 하중-변형, 연성, 강성 등을 평가하였다. 동 모델을 대상으로 비탄성해석을 수행하여 구조성능평가 결과와 비교하였다. 연구결과 도출된 결론은 다음과 같다. 넓은 보-기둥 내부 접합부는 중진지역인 국내에서 적용하고 있는 부분골조형 구조에 적용이 가능한 것으로 판단된다. 슬래브의 강성이 횡력을 받는 넓은 보-기둥 내부 접합부의 거동에 영향을 미치는 것으로 나타났다. 휨강성비가 2.0이상의 경우 T형보의 플랜지로서 슬래브 유효폭은 넓은 보 유효깊이의 2.0d로 평가되며, 휨강성비가 1.4~2.0일 경우, 슬래브 유효폭의 영향은 고려하지 않아도 되는 것으로 나타났다.

Keywords

References

  1. (구)대한주택공사(2002), 고강도콘크리트의 적용에 관한 연구-구조성능 평가.
  2. ACI-ASCE Committee 352 (1995), Recommendations for Design of Slab-Column Connections in Monolithic Reinforced Concrete Structures, American Concrete Institute, Farmington Hills, Michigan.
  3. Kunnath, S. K., and A. M. Reinghorn (1989), Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D), Part I- Modeling, Technical Report NCEER-89-0011, State University of New York at Buffalo.
  4. Kunnath, S. K., and A. M. Reinghorn (1992), DARC Version 3.0 : A Program for the Inelastic Damage Analysis of Reinforced Concrete Structures, Technical Report NCEER-92-0022, State University of New York at Buffalo.
  5. Paulay, T., and M. J. N. Priestley (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons.
  6. Quintero-Febres, C. G., and J. K. Wight (2001), "Experimental Study of Reinforced Concrete Interior Wide Beam-Column Connections Subjected to Lateral Loading", Journal of ACI, 98(4): 572-582.
  7. Reinhorn, A. M., and S. K. Kunnath (1987), IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame-Shear-Wall Structures, Technical Report NCEER-87-0008, State University of New York at Buffalo.
  8. Stehle, J. S., H. Goldsworthy, P. Mendis (2001), "Reinforced Concrete Interior Wide-Band Beam-Column Connections Subjected to Lateral Earthquake Loading", Journal of ACI, 98(3): 270-279.