• 제목/요약/키워드: flexural load

검색결과 1,223건 처리시간 0.026초

고성능 섬유쉬트를 부착시킨 경량 프리캐스트 복합패널로 보강된 RC보의 휨거동 (Flexural Behaviors of RC Beams Strengthened by Light Concrete Precast Composite Panel with an Advanced Fiber Sheet)

  • 안상호;윤정배
    • 콘크리트학회논문집
    • /
    • 제14권4호
    • /
    • pp.483-491
    • /
    • 2002
  • 본 연구는 경량 콘크리트 프리캐스트 패널에 고성능 섬유쉬트를 접착시킨 복합패널로 철근 콘크리트 보 하부에 휨 보강하여 보강보의 구조적 성능을 분석하였다. 보강보의 구조적 고찰은 항복하중, 최대하중, 각 하중에서 처짐 그리고 휨강성과 연성을 비교 분석하였다. 그 결과 39개 보를 실험하여 복합패널로 보강한 경우에 휨강도가 균일되게 향상됨을 보였다. 또한 실험결과 복합패널로 보강한 철근 콘크리트 보는 구조적으로 우수한 특성을 보였고, 섬유쉬트 부착공법으로 보강된 보와 비교할 경우에도 보강보의 강도가 더 개선되는 것으로 나타났다.

Comparison between ACI 318-05 and Eurocode 2 (EC2-94) in flexural concrete design

  • Hawileh, Rami A.;Malhas, Faris A.;Rahman, Adeeb
    • Structural Engineering and Mechanics
    • /
    • 제32권6호
    • /
    • pp.705-724
    • /
    • 2009
  • The two major widely used building design code documents of reinforced concrete structures are the ACI 318-05 and Eurocode for the Design of Concrete Structures EC2. Therefore, a thorough comparative analysis of the provisions of these codes is required to confirm their validity and identify discrepancies in either code. In this context, provisions of flexural computations would be particularly attractive for detailed comparison. The provisions of safety concepts, design assumptions, cross-sectional moment capacity, ductility, minimum and maximum reinforcement ratios, and load safety factors of both the ACI 318-05 and EC2 is conducted with parametric analysis. In order to conduct the comparison successfully, the parameters and procedures of EC2 were reformatted and defined in terms of those of ACI 318-05. This paper concluded that although the adopted rationale and methodology of computing the design strength is significantly different between the two codes, the overall EC2 flexural provisions are slightly more conservative with a little of practical difference than those of ACI 318-05. In addition, for the limit of maximum reinforcement ratio, EC2 assures higher sectional ductility than ACI 318-05. Overall, EC2 provisions provide a higher safety factor than those of ACI 318-05 for low values of Live/Dead load ratios. As the ratio increases the difference between the two codes decreases and becomes almost negligible for ratios higher than 4.

Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.195-209
    • /
    • 2020
  • This study investigates the behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) with hybrid macro-micro steel and macro steel-polypropylene (PP) fibers. Compression, direct and indirect tension tests were carried out on cubic and cylindrical, dogbone and prismatic specimens, respectively. Three types of macro steel fibers, i.e., round crimped (RC), crimped (C), and hooked (H) were combined with micro steel (MS) and PP fibers in overall ratios of 2% by volume. Additionally, numerical analyses were performed to validate the test results. Parameters studied included, fracture energy, tensile strength, compressive strength, flexural strength, and residual strength. Tests showed that replacing PP fibers with MS significantly improves all parameters particularly flexural strength (17.38 MPa compared to 37.71 MPa). Additionally, the adopted numerical approach successfully captured the flexural load-deflection response of experimental beams. Lastly, the proposed regression model for the flexural load-deflection curve compared very well with experimental results, as evidenced by its coefficient of correlation (R2) of over 0.90.

Comparison of Turkish Steel Building Specifications, TS 648 and SDCCSS 2018

  • Bozkurt, Mehmet Bakir;Ergut, Abdulkerim;Ozkilic, Yasin Onuralp
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.513-533
    • /
    • 2022
  • This study presents similarities and differences between Turkish Building Code for Steel Structures, which are TS 648 and SDCCSS (Specification for Design, Calculation and Construction of Steel Structures) in terms of the design of the members. Hot-rolled I-shaped steel sections for symmetrical and U-shaped steel sections (i.e., channels) for monosymmetric sections were elaborated in detail. The design strength of tension members under tensile load, compression members under axial load and flexural members under flexure and shear were examined separately. Connection details for tension members, slenderness for compression members and distance between lateral supports for flexural members were considered as prime variables. Analysis results revealed the design strength of the tension members where at least one of the cross-sectional parts is not connected to the connection plates, I-shaped compression members where a slenderness ratio is below 39 (𝛌<39), U-shaped compression members and flexural members where Lb is between Lp and Lr (Lpb≤Lr) designed based on TS 648 are greater than those designed based on SDCCSS 2018. Strength differences between the specification can reach 79% for tensile members, 13% for compression members and 9% for flexural members.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

면재 두께가 다른 샌드위치 복합재의 굽힘 거동 연구 (A Study on Flexural Behaviors of Sandwich Composites with Facesheets of Unequal Thickness)

  • 신광복;이재열;류봉조;이상진
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.201-210
    • /
    • 2007
  • Sandwich composites made of glass fabric epoxy facesheets with aluminum honeycomb core or balsa core is considered for the structural design of bodyshell of a Korean Low Floor Bus. Initially, in order to select the optimal facesheet and core materials in design stage, the flexural response of a sandwich composite is a critical importance. In this study, theoretical formula which could easily and quickly evaluate and obtain the flexural responses such as deflection and flexural stiffness of a sandwich composite subjected to external load was established. This theory could calculate the flexural responses of sandwich composites with narrow as well as wide width and with facesheets of unequal thickness, and also distinguish between the bending and shear effects of deflection. Finite element analysis using ANSYS V10.0 was used to offer the best elements for real sandwich composites, and flexural test according to ASTM C393 was conducted to compare with the results of theoretical formula and finite element analysis. The results show that the flexural responses of sandwich composites using proposed theoretical formula is in good agreement with those of experiment and finite element method.

하이브리드 조립형 보강 기법을 적용한 철근콘크리트 보의 휨 성능 평가에 관한 실험적 연구 (An Experimental Study on Flexural Performance of RC Beams Reinforced With Hybrid Prefabricated Retrofit Method)

  • 문상필;이성호;이영학;김민숙
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.131-139
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method is suggested and examined. Six specimens were manufactured in order to evaluate their flexural performance of RC beams. Test parameters include the added beam depth, the thickness of bottom plate, the number of the steel plate with openings. The effects of these parameters on the flexural performance of reinforced concrete beams were examined. The load-deflection behavior and modes of cracks are presented from the test results. At the test result, the flexural capacity and the ductility of the hybrid prefabricated retrofit method was increased satbly. Also, comparing the flexural performance of RC beam and retrofitted RC beams, it was increased that the flexural strength is about 3.3 times, the ductility is about 2.55 times, and energy dissipation capacity is about 7.34 times.

내부충전 콘크리트와 횡보강 및 축방향 철근으로 보강된 PHC 말뚝의 휨강도 (Flexural Strength of PHC Pile Reinforced with Infilled Concrete, Transverse and Longitudinal Reinforcements)

  • 방진욱;현정환;이방연;이승수;김윤용
    • 콘크리트학회논문집
    • /
    • 제25권1호
    • /
    • pp.91-98
    • /
    • 2013
  • PHC 말뚝은 우수한 축하중 저항 능력에 비해 상대적으로 전단 및 휨 저항 성능이 낮은 단점을 가지고 있다. 이 연구의 목적은 기존 PHC 말뚝의 단점을 개선할 목적으로 개발된 중공부에 내부충전 콘크리트, 축방향 철근과 전단 철근으로 보강한 합성 PHC 말뚝(ICP 말뚝)의 휨성능을 평가하는 것이다. 이를 위하여 기존의 교대 설계사례로 부터 말뚝에 발생하는 축력과 휨모멘트를 조사한 후, ICP 말뚝 계산을 위하여 개발한 축력-휨모멘트 상관관계 프로그램을 이용하여 허용 축력과 휨모멘트가 발생하는 부재력을 만족하도록 ICP 말뚝을 설계하였다. 설계에 따라 ICP 말뚝을 제작하였으며, 휨실험을 수행하였다. 실험 결과 ICP 말뚝은 PHC 말뚝에 비하여 약 45% 큰 휨내력을 나타내었다. 또한 계산에 의해 예측한 ICP 말뚝 휨강도의 25%를 허용 휨모멘트로 취할 경우, 약 4.5의 안전율을 갖는 것으로 평가되었다.

Experimental studies on composite beams with high-strength steel and concrete

  • Zhao, Huiling;Yuan, Yong
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.373-383
    • /
    • 2010
  • This paper presents the experimental studies of the flexural behavior of steel-concrete composite beams. Herein, steel-concrete composite beams were constructed with a welded steel I section beam and concrete slab with different material strength. Four simply supported composite beams subjected to two-point concentrated loads were tested and compared to investigate the effect of high strength engineering materials on the overall flexural response, including failure modes, load deflection behavior, strain response and interface slip. The experimental results show that the moment capacity of composite beams has been improved effectively when high-strength steel and concrete are used. Comparisons of the ultimate flexural strength of beams tested are then made with the calculated results according to the methods specified in guideline Eurocode 4. The ultimate flexural strength based on current codes may be slightly unconservative for predicating the moment capacity of composite beams with high-strength steel or concrete.

SFRC 휨거동에의 system identification (System Identification on Flexure of SFRC)

  • 이차돈
    • 전산구조공학
    • /
    • 제4권3호
    • /
    • pp.99-106
    • /
    • 1991
  • 강섬유 보강 콘크리트(SFRC)의 휨 거동은 재료의 인장 및 압축 응력-변형도에 의존하며 이때 이들은 휨응력시 작용하는 strain gradient의 영향을 받게 된다. SFRC의 경우, 휨 실험은 직인장 실험과 비교하여 볼 때 상대적으로 간편하며 또한 다수의 실험결과가 확보되어 있다. 따라서 이들 휨 실험 결과로부터 SFRC의 기본적 재료 성질인 인장응력-변형도를 유출하는 것은 중요하다고 하겠다. 본 연구의 목적을 위하여 휨 실험 data를 해석하기 위한 "System Identification"방법론이 사용되었으며 그 결과 휨 응력하에서의 SFRC의 인장거동을 설명하는 주요 변수들이 고찰되었다.

  • PDF