1 |
Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concrete Constr., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367.
DOI
|
2 |
Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concrete Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375.
DOI
|
3 |
Mezquida-Alcaraz, E.J., Navarro-Gregori, J., Lopez, J.A. and Serna-Ros, P. (2019), "Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model", Comput. Concrete, 23(1), 11-23. https://doi.org/10.12989/cac.2019.23.1.011.
DOI
|
4 |
Nguyen, D.L., Ryu, G.S., Koh, K.T. and Kim, D.J. (2014), "Size and geometry dependent tensile behavior of ultra-high-performance fiber-reinforced concrete", Compos. Part B: Eng., 58, 279-292. https://doi.org/10.1016/j.compositesb.2013.10.072.
DOI
|
5 |
Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
DOI
|
6 |
Pourbaba, M., Asefi, E., Sadaghian, H. and Mirmiran, A. (2018a), "Effect of age on the compressive strength of ultra-high-performance fiber-reinforced concrete", Constr. Build. Mater., 175, 402-410. https://doi.org/10.1016/j.conbuildmat.2018.04.203.
DOI
|
7 |
Pourbaba, M., Joghataie, A. and Mirmiran, A. (2018b), "Shear behavior of ultra-high performance concrete", Constr. Build. Mater., 183, 554-564. https://doi.org/10.1016/j.conbuildmat.2018.06.117.
DOI
|
8 |
Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2019a), "A comparative study of flexural and shear behavior of ultra-high-performance fiber-reinforced concrete beams", Adv. Struct. Eng., 22(7), 1727-1738. https://doi.org/10.1177/1369433218823848.
DOI
|
9 |
Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2019b), "Flexural response of UHPFRC beams reinforced with steel rebars", Adv. Civil Eng. Mater., 8(3), 411-430. https://doi.org/10.1520/ACEM20190129.
|
10 |
Raj, S.D., Ganesan, N. and Abraham, R. (2020), "Role of fibers on the performance of geopolymer concrete exterior beam column joints", Adv. Concrete Constr., 9(2), 115-123. https://doi.org/10.12989/acc.2020.9.2.115.
DOI
|
11 |
Rasoolinejad, M. and Bazant, Z.P. (2019), "Size effect of squat shear walls extrapolated by microplane model M7", ACI Struct. J., 116(3), 75-84.
|
12 |
Sadaghian, H. and Farzam, M. (2019), "Numerical investigation on punching shear of RC slabs exposed to fire", Comput. Concrete, 23(3), 217-233. https://doi.org/10.12989/cac.2019.23.3.217.
DOI
|
13 |
Sadaghian, H. and Farzam, M. (2019), "Numerical investigation on punching shear of RC slabs exposed to fire", Comput. Concrete, 23(3), 217-233. https://doi.org/10.12989/cac.2019.23.3.217.
DOI
|
14 |
Sahoo, D.R., Solanki, A. and Kumar, A. (2014), "Influence of steel and polypropylene fibers on flexural behavior of RC beams", J. Mater. Civil Eng., 27(8), 04014232. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001193.
DOI
|
15 |
Sanal, I. (2018), "Performance of macrosynthetic and steel fiber-reinforced concretes emphasizing mineral admixture addition", J. Mater. Civil Eng., 30(6), 04018101.
DOI
|
16 |
Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.
DOI
|
17 |
Smarzewski, P. (2017), "Effect of curing period on properties of steel and polypropylene fibre reinforced ultra-high performance concrete", IOP Conf. Ser.: Mater. Sci. Eng., 245(3), 032059.
|
18 |
Soe, K.T., Zhang, Y.X. and Zhang, L.C. (2013), "Material properties of a new hybrid fibre-reinforced engineered cementitious composite", Constr. Build. Mater., 43, 399-407. https://doi.org/10.1016/j.conbuildmat.2013.02.021.
DOI
|
19 |
Sridhar, R. and Prasad, R. (2019), "Damage evaluation of RC beams strengthened with hybrid fibers", Adv. Concrete Constr., 8(1), 9-19. https://doi.org/10.12989/acc.2019.8.1.009.
DOI
|
20 |
Swamy, R.N. (1985), "High-strength concrete-material properties and structural behavior", Spec. Publ., 87, 119-146.
|
21 |
Wang, P.T., Shah, S.P. and Naaman, A.E. (1978), "Stress-strain curves of normal and lightweight concrete in compression", J. Proc., 75(11), 603-611.
|
22 |
Wee, T.H., Chin, M.S. and Mansur, M.A. (1996), "Stress-strain relationship of high-strength concrete in compression", J. Mater. Civil Eng., 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70).
DOI
|
23 |
Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
DOI
|
24 |
Xu, L., Huang, L., Chi, Y. and Mei, G. (2016), "Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete", ACI Mater. J., 113(2), 219-229.
|
25 |
Yan, G. (2005), "Study on failure criterion and constitutive relationship of 200 MPa reactive powder concrete (RPC200)", Doctoral Dissertation, Beijing Jiaotong University.
|
26 |
Yoo, D.Y., Kim, M.J., Kim, S.W. and Park, J.J. (2017b), "Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers", Constr. Build. Mater., 150, 383-394. https://doi.org/10.1016/j.conbuildmat.2017.06.018.
DOI
|
27 |
Yoo, D.Y., Kim, S., Park, G.J., Park, J.J. and Kim, S.W. (2017a), "Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites", Compos. Struct., 174, 375-388. Get rights and content.
DOI
|
28 |
Yoo, D.Y., Kim, S.W. and Park, J.J. (2017c), "Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers", Constr. Build. Mater., 132, 219-229. https://doi.org/10.1016/j.conbuildmat.2016.11.104.
DOI
|
29 |
Zhenghai, G. (1997), Strength and Deformation of Concrete: Test Basis and Constitutive Relation.
|
30 |
Wang, L.M. and Xu, S.L. (2002), "Characteristic curve of concrete and fiber reinforced concrete", J. Dalian Univ. Technol., 42(5), 580-585.
DOI
|
31 |
Aslani, F., Nejadi, S. and Samali, B. (2014b), "Short term bond shear stress and cracking control of reinforced self-compacting concrete one way slabs under flexural loading", Comput. Concrete, 13(6), 709-737. https://doi.org/10.12989/cac.2014.13.6.709.
DOI
|
32 |
Aslani, F., Nejadi, S. and Samali, B. (2015), "Instantaneous and time-dependent flexural cracking models of reinforced self-compacting concrete slabs with and without fibres", Comput. Concrete, 16(2), 223-243. https://doi.org/10.12989/cac.2015.16.2.223.
DOI
|
33 |
Alsalman, A., Dang, C.N., Prinz, G.S. and Hale, W.M. (2017), "Evaluation of modulus of elasticity of ultra-high performance concrete", Constr Build. Mater., 153, 918-928. https://doi.org/10.1016/j.conbuildmat.2017.07.158.
DOI
|
34 |
ASTM C150/C150M (2017), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA.
|
35 |
ASTM C1609/C1609M (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International, West Conshohocken, PA.
|
36 |
ASTM C469/C469M (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA.
|
37 |
Aslani, F., Nejadi, S. and Samali, B. (2014a), "Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres", Comput. Concrete, 14(4), 419-443. http://dx.doi.org/10.12989/cac.2014.14.4.419.
DOI
|
38 |
ATENA (2016), Finite Element Software, ATENA Program Documentation, Theory and FRC User Manual, Cervenka Consulting, Prague, Czech Republic.
|
39 |
Banthia, N. and Gupta, R. (2004), "Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices", Mater. Struct., 37(10), 707-716. https://doi.org/10.1007/BF02480516.
DOI
|
40 |
Brandt, A.M. (2005), Cement-based Composites: Materials, Mechanical Properties and Performance, CRC Press.
|
41 |
Farzam, M. and Sadaghian, H. (2018), "Mechanical model for punching shear capacity of rectangular slab-column connections", Struct. Concrete, 19(6), 1983-1991. https://doi.org/10.1002/suco.201700213.
DOI
|
42 |
Ganesan, N., Sahana, R. and Indira, P.V. (2017), "Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete", Adv. Concrete Constr., 5(1), 075. http://dx.doi.org/10.12989/acc.2017.5.1.075.
DOI
|
43 |
GID (2015), International Centre for Numerical Methods in Engineering (CIMNE), Spain.
|
44 |
Graybeal, B.A. (2007), "Compressive behavior of ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 104(2), 146.
|
45 |
Graybeal, B.A. and Stone, B. (2012), "Compression response of a rapid-strengthening ultra-high performance concrete formulation", US Department of Transportation, Federal Highway Administration.
|
46 |
Haber, Z.B., De la Varga, I., Graybeal, B.A., Nakashoji, B. and El-Helou, R. (2018), "Properties and behavior of UHPC-class materials (No. FHWA-HRT-18-036)", Federal Highway Administration, Office of Infrastructure Research and Development, United States.
|
47 |
Halvaei, M., Jamshidi, M. and Latifi, M. (2016), "Investigation on pullout behavior of different polymeric fibers from fine aggregates concrete", J. Indust. Text., 45(5), 995-1008. https://doi.org/10.1177/1528083714551437.
DOI
|
48 |
Hsie, M., Tu, C. and Song, P.S. (2008), "Mechanical properties of polypropylene hybrid fiber-reinforced concrete", Mater. Sci. Eng.: A, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037.
DOI
|
49 |
JSCE-SF4 III, P. (1984), Method of Tests for Steel Fiber Reinforced Concrete, Concrete Library of JSCE, The Japan Society of Civil Engineers.
|
50 |
Kandekar, S.B. and Talikoti, R.S. (2020), "Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber", Adv. Concrete Constr., 9(1), 1-7. https://doi.org/10.12989/acc.2020.9.1.001.
DOI
|
51 |
Farzam, M., Sadaghian, H. and Khodadade, G. (2019), "Shear behaviour of elongated rectangular wall-footing connections under eccentric loads", Mag. Concrete Res., 71(1), 43-54. https://doi.org/10.1680/jmacr.17.00378.
DOI
|
52 |
Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S. and Lee, B.Y. (2016), "Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete", Compos. Struct., 145, 37-42. https://doi.org/10.1016/j.compstruct.2016.02.075.
DOI
|
53 |
Kannam, P. and Sarella, V.R. (2018), "A study on validation of shear behaviour of steel fibrous SCC based on numerical modelling (ATENA)", J. Build. Eng., 19, 69-79. https://doi.org/10.1016/j.jobe.2018.05.003.
DOI
|
54 |
Kim, D.J., Park, S.H., Ryu, G.S. and Koh, K.T. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25(11), 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051.
DOI
|
55 |
Kollmorgen, G.A. (2004), "Impact of age and size on the mechanical behavior of an ultra high performance concrete", Doctoral Dissertatio, Michigan Technological University.
|
56 |
Korea Concrete Institute (KCI) (2007), Concrete Design Code and Commentary, Kimoondang Publishing Co., Seoul, Republic of Korea.
|
57 |
Li, B., Chi, Y., Xu, L., Shi, Y. and Li, C. (2018), "Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete", Constr. Build. Mater., 191, 80-94. https://doi.org/10.1016/j.conbuildmat.2018.09.202.
DOI
|