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ABSTRACT

Flexural load —deflection relationships for steel fiber reinforced concrete (SFRC) are dependent on
the tensile and compressive constitutive behaviors of the material, which may be refined in the pres-
ence of strain gradients under flexural loads. Considering the relatively large amount of flexural test
results available for steel fiber reinforced concrete, and the relative ease of conducting such tests in
comparison with direct tension tests, it seems to be important to obtain basic  information on the ten-
sile constitutive behavior of SFRC from the result of flexural tests. For this purpose “System Identifi-
cation” technique was used for interpretating the flexural test data and it was successful in obtaining
optimum sets of main parameters which explain the tensile constitutive behavior of SFRC under flex-

ure.
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1. INTRODUCTION

Constitutive behaviors of a material in ten-
sion and compression determine material’s
flexural load —deflection relationships. Gener-
ally it is easier to conduct flexural tests of
SFRC than to conduct direct tension tests and
comparatively larger amount of data on the

flexural test results is available, Flexural test
data are interpreted in this study for the deri-
vation of a basic tensile properties of SFRC
under flexure, The analytical model for flexure
developed previously by the author [1] has
been used for this purpose together with “Sys-
In “System

tem Identifiation” technique.

Identification™ the response of a system to a
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System Identification on Flexure of SFRC

given input is known from experiments and -
mathematical model is to be found which will
describe the material behavior, Flexural
responses of SFRC beam in terms of load —de-
flection relationships from experiments were
simulated by iteratively adjusting the
parameters in the constitutive models incor-
porated in the analytical model of SFRC under
flexure, The derived values for the
paramenters through “System Identification”
are then compared with analytically, and ex-
perimentally obtained values. Some
discussions are also made regarding the strain
gradient effects on constitutive behavior of

steel fiber reinforced concrete.

2. “SYSTEM IDENTIFICATION” FOR SFRC UNDER
FLEXURE

In order to reflect the effects of the
paramenters in the constitutive models on the
overall flexural behavior of SFRC, an analyti-
cal model which can simulate both the physi-
behavior of SFRC and
constitutieve behavior of the material were es-
tablished by the author in Ref.1. This model
takes into account for a formation of one major

cal flexural

crack and subsequent accumulation of the cur-
vature at the critical section. Complete flex-
ural load —deflection relationships were
constructed by this model with cradk —open-
ing considered through conducting a flexural
analysis of the critical section, and using some
assumptions regrading curvature distributions
in the vicinity of the critical section. Satisfac-
tory comparisons were obtained between test
results and theoretical simulations based on
the developed flexural model (refer to Ref. 1),

A mathematical form for error function is

needed to measure the correlation between

test results and predictions of the mathemat-
ical model for a given set of characteristic
values. The error function should be able to
quantify the differences in important flexural
characteristics of SFRC.
cation” deals with finding the location on the

“Systemn identifi-

error surface with minimum error, the
coordinates of which will be the desired
optimizing paramenters. These optimized
parameters can be interpreted as the values of
representing the best correlation between the
analytical and experimental results.

The characteristic material values in consti-
tutive models are then adjusted until the best
possible correlation is achieved between the
predicted and measured responses of SFRC
under flexure. Tensile and compressive consti-
tutive models incorporated in flexural model of
SFRC have ten material — and ten constitutive
behavior —related paramenters for defining
their complete shapes. Three important
characteristic paramenters of the tesile consti-
tutive behavior of SFRC were selected out of
the ten material —related and ten constitutive
behavior —related factors of SFRC, which will
be described later, and these three parameters

were kept constnat as “standard” values. The
“standard” values of the factors have been
chosen either on the basis of test results or
considering practical ranges applicable to
SFRC.

The error function (E) is defined to measure
the correlation in overall flexural behavior be-
tween the experimentally measured and
theoretically predicted load —deflection
relationships. The characteristic values ex-
pressing the flexural behavior of SFRC are
peak flexural load (P), flexural dutility (D),
and flexural toughness (A). The differences in

these characteristic values set the bases for
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computing the error between predicted and ex-

perimental flexural load —deflection
relationships :
3
E= Z a; * elz (1)

where : oy=weighing coefficient for each
factor ;
e,=(P.+P) /P.;
e,=(D,+D,) /D, :

P=ultimate load (Fig. 1) :
D=ductility

=P /P, (Fig. 1) ;and
A=toughness

=area under load —deflection curve
as defined in Fig.1.

“_

Subscripts “e” and “t” in eq.(1) represent
“experiment” and “theory”, respectively. Con-
sidering equal contribution of each e; to the
total error (E) in terms of prepeak (with e},

PEAK LOAD =P
DUCTILITY = P/ Pr
Po . AREA = A

| SPAN / 150 |

SPAN /150 |
I —

Figure 1. Definition of Three Different Criteria

post —peak (with e,) and overall behavior
(with e;) in load —deflection curve, values for
weighing coefficients are given 1.0 for each er-
ror term.

The error fuunction derived above is an ob-
jective measure of how well the model fits the
experimental data. The error function should
be minimized in the N-—parametric space.
Nonlinear programming techniques can be
used for this purpose. The nature of the pres-
ent study suggests that the minimum point
lies in the interior of the feasible region of the
parameter space rater than on its boundary,
and thus unconstrained nonlinar programmings
suit this problem.

An' iterative minimization algorithm was
used in the related unconstrained nonlinear
programming approach. The algorithm be able
to converge to a stational point in the global
sense and should also converge rapidly when it
is in the neighborhood of a local minimum
(Luenberger 1973). The iterative minimization
approach adopted in this investigation is de-
scribed below, Starting from the point in the
parameter space selected after k steps (x),
choose the next point as follows :

Xk+]:Xk+C -d (2)
where : d=direction vetor : and
&=step length.

Individual methods vary in their choice of ¢
and d and this choice in general determines
the efficiency of the method. Calculation of
the gradient numerically rather than analyti-
cally may be desirable or even necessary. As
the calculation of partial derivatives of a given
function is, in general, at least as complicated
as calculation of function itself, a method
which avoids the calucultion of derivatives has
the possibility of being more efficient as well
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as having the advantage of being more con-
venient to use, One such method has been
given by Powell 1964. The basic Powell’s al-
gorithm chosen for use in this study is
presented below and it is modified further in
this study to properly choose the direction
vectors in order to avoid possible break down
due to linear dependency of the direction
vectors (refer to Walsh 1975 for details). The
kth iteration of this method starts with a cur-
rent point x, and n directions, dy ; i=1,2,---, n.
At the beginning, x; and d,, j are assumed to

be given.
1. Let vy, 0=x%
2. Find B* minimizing the function,

f(ij—l+ﬂj - dk' j).

Set yi, j=Vi, j-1t8" - di; for 1=1, 2,--,n,

w

. Let &,=Vy n— Xk
4. Find A, minimizing the function,
fly,, B D).
Set Xu41=Vi, ot A
5. Let dy4,=dy j+, i=1, 2,--, n—1 and
di+1, =L
6. Go to step 1 and restart for (k=+1)™ step.

The k' cycle which containes (n+1)
subcycles for finding minimum along the given
direction is schematically shown in Fig.
2 for n=1. In this figure, superscripts and
subscripts represent the subcycle number and
iteration number in a certain subcycle, re-
spectively. In Powell's method, (n+1) line
searches are needed to generate one conjugate
direction. Therefore, in order to fined the glo-
bal minimum point{(assuming that the given
function is quadratic and positive definite)a
total of n(n+1) line searches are required.
Since in the Powell’s method, the error func-

tion is bewmng approximated by a quadratic
function, it seems to be appropriate to use
quadratic line search. In the present study,
the method of quadratic line search described
by Powell (Powell 1964) has been used.

FIRST CYCLE

SECOND CYCLE

Figure 2. Main Theorems in Powell's Algorithm for n =2

The flexural model containes ten mate-
rial —related and ten constitutive behavior —re-
lated factors (Fig.3). The variations in some
of these factors have significant effects on the
behavior of SFRC under flexure, while
variations in other factors result in negligible
effects on the flexural behavior of SFRC.
Since it is not practical to optimize all these
factors in the process of “System Identifi-
cation”, factors whose variations result in sig-
nificant effects on the flexural behavior of
SFRC need to be selected as the “System
Identifiction” paramenters. Soroushian and
Lee(Soroushian and Lee 1990) have examined
on the basis of 2—k factorial design the
influnece of each factor on the flexural peak
load (P), flexural ductility (D), flexural tough-
ness (A) and overall flexural behavior of
SFRC which were described by combination of
P, D and A defined earlier. It was observed
that in the case of material —related factors,
the fiber peak pull—out strength (=,), fiber di-
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ameter (d;), fiber length (l;), fiber volume
fraction (Vy), matrix tensile strength (g,’),
and fiber slip at reidual pull —out strength (S,)
are the most influential factors deciding the
flexural behavior of SFRC (see Table 1). As
far as the constitutive behavior—related
factors are concerned, it was shown that their
effects are negligible when compared with
those of the material—related
(Soroushian and Lee 1990).

factors

TENSILE STESS TENSION SOFTENING

6, =0, (14 N3+ tymedy - -Ny)
o, = 1,0,

g = gy {1+ (yNydpl )

TENSILE STRAIN

vz
52

FIBER SLIP

COMPRESSIVE STRESS fly = fle +erVy -l//d/

Z = —anf (V- N Voipldr)

fo=cyxf o +exVellds

& = csVydptlp + 0.0021

|
i

COMPRESSIVE STRAIN

* t's and ¢’s are experimentally obtained coefficients. ctors

Figure 3. Factors considered in Flexural Analysis

Among the six influential material —related
factors, those representing fiber dimension (i.
e., dr and l;) as well as the volume fraction of
fibers (V;) should be known inputs while
analyzing some flexural test data obtained for
SFRC. This further reduces the number of
“System Identification” paramenters and
leaves only three material —related factors to
be entered as paramenters in “System Identifi-
cation” : fiber peak pull—out strength(+,),

Table 1. Results of 2—k Factorial Design

Factors f— Values on Different Criteria (x 1000)
Peak Load | Ductility |Toughness Overall Behavior

Om' 1349 38 20712 20.14
fc 22 0.32 249 0.19
St 183 1.39 1889 0.08
So 0.71 0.0 489 0.02
df 383 161 706830 77
If 147 51 244490 .4
A%} 244 91 425800 54.19
T 33 231 865120 7
Sek 18 0.3 662 0.087
S 24 145 195130 60

fiber slip at residual pull—out strength (S;)
and matrix tensile stregnth (o). It is worth
mentioning that the tensile stregnth of SFRC
can be determined once the values of these
three factors are obtained through the analysis
of  flexural

results  using “System

Identifiction”,

3. RESULTS OF “SYSTEM IDENTIFICATION”

Table 2 summarizes conditions of the SFRC
flexural tests considered for “System Identifi-
cation”, and also presents the optimized values
of the three main parameters obtained from
“System Identification”. Fig.4 illustrates some
typical comparisons between the experime-
ntally obtained and theoretically optimized
flexural load —deflection curves. Satisfactory
correlations are observed in these figures.

From Table 2, the optimized values of three
parameters are found to be larger than the
values obtained from direct tension material
tests (see the comparison presented in Table
3). The experimental data presented in Table
2 are the averages obtained from several di-
rect tension and fiber pull —out test performed
on materials comparable to those used in flex-
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Table 2. Test Conditions and Optimized Values from “System Indentification.”

Load(N}

LA A S A S B Rt B S S B

0.0 0.5 1.0 1.5 220 25

Deflection(mm)}

(b) Test Results from Sakai et al. 1986.

Curves.

Figure 4. Comparisons between Experimentally Obtained and
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Test Specimen Fiber , Opt'd Values Itr.
Ref. - fc Error
No. |width depth length| type df 1f A%3 o’ U Sr No.
Sakai and Nak 1 100 100 300 | strit 0.5 30 0.01 | (40) | 5.032 6.174 2.72 |0.000456 4
armura, 1986 2 100 100 300 | strt  0.56 30 0.015| (40) | 5.895 5.036 3.441 | 0.000024 3
3 100 100 300 | strt  0.56 30 0.02 (40) | 7.132  4.413 3441 | 0.000011 6
Soroushian and 4 100 100 300 | strt  0.56 30 0.01 34.6 | 3.332 3.831 2.198 | 0.010869 6
Ateff, 1989 5 100 100 300 | strt 0.5 30 0015 | 4.6 | 4649 3.933 3.121 | 0.000273 3
6 100 100 300 | strt  0.56 30 0.01 | 48 3.032 5.0 3.0 0.026306 2
7 100 100 300 | strt  0.56 30 0.01 24.7 | 2,564 2,752 256 |0.000494 7
Cho and Koba- 8 100 100 300 | hook 0.5 30 0.01 | (40) | 3.444 9.291 3.085 | 0.000231 3
yashi, 1982 9 100 100 300 | hook 0.5 30 0.01 | (40) | 3.381 7.73  6.247 | 0.000967 4
10 100 100 300 | hook 0.5 30 0.01 | (40) | 3.695 5.371 2.957 | 0.004180 2
11 100 100 300 | hook 05 30 0.01 | (40) | 257 625 2.887 | 0.003061 3
Values in parenthesis are assumed ones.
40000
- o’_‘(&-;‘l:*) P —— s frock) o e 1 = M‘Z',‘t"_':_z) ten | marrin | fiber (hook) ot values :
b No. 3 4t I vt am v Se No. re \ 4t u vi om " "w [ r
Mpa) | (mm} | @om) | (%) [ Mps) | Mpa) | (mm} Mpsy | (mm) | mm) | (%) | Mpa) | (Mpa} | (mm)
11 - s 30 10 26 63 25 1 9 0 I oS 30 ‘ 10 38 { 17 ] 63
Assumed Valoes = B . T — ™
g oo
3 :
T T T e e e S e B e e e N0 NN 2
! s 20 25 0.0 0.5 10 1.5 20
Deflection(mm) Deflection{mm)
(a) Test Results from Soroushian and Ateff. 1989. (c) Test Results from Soroushian and Ateff. 1989,
- u(“u'“h_'H' ) text | matrix fiber {srt) optd values . m?:d) wen | maces PR od valoes
No. (3 df u vi am [ Se¢ Nao. re dar 'S Vi om tu Sr
Mpa) | (mm) | (mm) | (%) | (Mpa) | (Mpa) | (mm} Mpa) | (mm) [ {mm} | (%) | (Mpa) | (Mpa) | (mm)
6 4R 0.56 3 10 3o 50 30 - [3740' (151 30 1 10 37 54 30
- * Astumed Values
=
5 20000 -
3

4T T T T

T T T T T
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20
Deflection{mm)

L

(d) Test Results from Soroushian and Ateff. 1989.

Theoretically Optimized Flexural Load —Deflection

25
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Table 2. Comparisons of the Tension Test Results with the Optimized Values of Parameters in Analysis of Flexural Test Results using

“System Identification ”

Ref Test Fiber om’ Ratios
No. type df If \%i (0.332 « fc) 6mo /em’ U0 /7’ Sro/Sr
Sakai and Nak- 1 strt 0.56 30 0.01 2.1 2.4 2.35 0.97
amura, 1986 2 strt 0.56 30 0.015 2.1 2.8 1.92 1.23
3 strt 0.56 R 0.01 2.1 3.4 1.68 1.23
Soroushian and 4 strt 0.56 30 0.01 1.95 1.7 1.45 0.97
Afteff, 1989 5 strt 0.56 30 0.015 1.95 2.4 1.50 0.11
6 strt 0.56 30 0.01 2.30 1.32 1.90 1.07
7 strt 0.56 30 0.01 1.65 1.55 1.05 0.91
Cho and Koba- 8 hook 0.5 30 0.01 2.1 1.63 2.07 1.10
yashi, 1982 9 hook 0.5 30 0.01 2.1 1.82 1.72 2.23
10 hook 0.5 30 0.01 2.1 1.76 1.20 1.05
11 hook 0.5 30 0.01 2.1 1.22 1.35 1.03

ural tests. The matrix tensile strength (e,)
and performance of fibers obtained from the
analysis of flexural test results may be
improved in comparison with those obtained
“from direct tension and pull —out tests due to
the strain gradient effects under flexural
loading condition, which generally lead to
improved tensile performance of the material
(Swamy et al., 1974). The improvements in
pull-out performance in flexural test specimens
over those obtained from single fiber pull —out
tests may also be attributed to the positive ef-
fects of fiber reinforcement at the surrounding
matrix (noting that single fiber pull —out tests
are generally conducted using non—fibrous
test

specimens. Swamy et al. 1974, using an analy-

surrounding matrices) in  flexural
sis of experimental data, has also reported in-
crease in pull—out strength under flexure
when Compéred with pull —out strength under
tension.

Large

parameters(,, o, and S,) obtained from “Sys-

variations in the values of
tem Identification” in Table 2 suggest that the
highly variable (and unreliable) measurements
of flexural deflections in the pre —peak region

have some influence on the analysis of flexural
test data using the “System Identification” ap-
proach. These variations may also partly result
from the fact that some flexural test results
reported in the literature were not ac-
companied by reliable informations on basic
material properties and thus some assumptions
had to be made on these properites through

the course of “System Identification”.

4. CONCLUSION

The following conclusions are made from
this study :

(1) The improvements in pull —out perform-
ance in flexural tests over those obtained from
single fiber pull —out tests (where fibers are
generally pulled out of non-—fibrous matrices)
may be attributed to the positive effects of
reinforcements of the surrounding matrix in
flexural test specimens,

(2) The matrix tensile stregnth (e,’) and
pull —out performance of fibers obtained from
the analysis of flexural test results were su-
perior to those obtained from direct tension
and pull —out tests., This may be attributed to
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the positive effect of strain gradient under
flexural loads.

(3) Large variations were observed in the
values of paramenters{(r, ¢, and S,) obtained
from “System Identification.” This could re-
sult from both unreliable measurements of
flexural deflections in the pre—peak region in
some test results reported in the literature,
and also from the lack of information on some
basic material properites for flexural tests con-
ducted by other investigators.
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