• 제목/요약/키워드: flexural failure

검색결과 861건 처리시간 0.022초

CFRP로 보강된 철근콘크리트 보의 거동 특성 (Behavior Characteristics of Reinforced Concrete Beam Strengthened with Carbon Fiber Reinforced Polymer Plate)

  • 박중열;황선일;조홍동;한상훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.125-131
    • /
    • 2003
  • 본 연구에서는 최근 구조물 보강을 위해 사용이 증가하고 있는 CFRP로 보강된 철근콘크리트 보의 휨거동 특성을 분석하였다. 실험변수로 보강길이와 폭, 철근비, 단부정착 여부 그리고 무보강 기준실험체의 예상 극한하중의 75%에 상응하는 사전하중 여부를 고려하였으며, 각각의 실험변수에 따른 영향을 분석하였다. 이를 위해, 총 20개의 철근콘크리트 보를 제작하고 실험을 수행하였으며, 실험변수에 따른 극한하중, 처짐, CFRP의 변형률 그리고 파괴모드의 변화 특성에 대해 연구하였다.

Repair, retrofitting and rehabilitation techniques for strengthening of reinforced concrete beams - A review

  • Ganesh, P.;Murthy, A. Ramachandra
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.101-117
    • /
    • 2019
  • Structural strengthening of reinforced concrete (RC) beams is becoming essential to meet the up-gradation of existing structures due to the infrastructure development. Strengthening is also essential for damaged structural element due to the adverse environmental condition and other distressing factors. This article reviews the state of the field on repair, retrofitting and rehabilitation techniques for the strengthening of RC beams. Strengthening of RC beams using various promising techniques such as externally bonded steel plates, concrete jacketing, fibre reinforced laminates or sheets, external prestressing/external bar reinforcement technique and ultra-high performance concrete overlay have been extensively investigated for the past four decades. The primary objective of this article is to discuss investigations on various strengthening techniques over the years. Various parameters that have been discussed include the flexural capacity, shear strength, failure modes of various strengthening techniques and advances in techniques over the years. Firstly, background information on strengthening, including repair, retrofitting, and rehabilitation of RC beams is provided. Secondly, the existing strengthening techniques for reinforced concrete beams are discussed. Finally, the relative comparisons and limitations in the existing techniques are presented.

Crack propagation in flexural fatigue of concrete using rheological-dynamical theory

  • Pancic, Aleksandar;Milasinovic, Dragan D.;Goles, Danica
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.55-62
    • /
    • 2021
  • The concrete fatigue analysis can be performed with the use of fracture mechanics. The fracture mechanics defines the fatigue crack propagation as the relationship of crack growth rate and stress intensity factor. In contrast to metal, the application of fracture mechanics to concrete is more complicated and therefore many authors have introduced empirical expressions using Paris law. The topic of this paper is development of a new prediction of fatigue crack propagation for concrete using rheological-dynamical analogy (RDA) and finite element method (FEM) in the frame of linear elastic fracture mechanics (LEFM). The static and cyclic fatigue three-point bending tests on notched beams are considered. Verification of the proposed approach was performed on the test results taken from the literature. The comparison between the theoretical model and experimental results indicates that the model proposed in this paper is valid to predict the crack propagation in flexural fatigue of concrete.

심미성 향상을 위한 간접수복용 Gum-Shade 복합레진의 굽힘 특성 평가 (Evaluation of Flexural Properties of Indirect Gum-Shade Composite Resin for Esthetic Improvement)

  • 임용운;황성식
    • 치위생과학회지
    • /
    • 제15권4호
    • /
    • pp.407-412
    • /
    • 2015
  • 본 연구에서는 심미성 향상을 위한 3종의 GS 복합 레진의 굽힘 특성 평가를 위해 ISO 4049 규격에 따라 실험을 설계하여 3점 FS 실험을 통하여 FS와 FM, WOF를 측정하고 분석하여 각각의 기계적 특성간의 상호 상관성 및 신뢰도를 평가하고, GS 복합레진의 기계적 거동 평가 및 재료 선택에 유용한 정보를 얻고자 하였다. 그 결과, 3종의 GS 복합레진의 FS와 FM은 TP에서 가장 높았으며, TF의 FS는 ISO 권장 강도인 80 MPa에 미치지 못했다. 파절될 때 흡수한 에너지를 나타내는 WOF는 T에서 가장 높았으며, TP에서 가장 낮았다. GS 복합 레진의 FS, FM은 재료별 유의한 차이를 보였으나(p<0.05), WOF는 유의한 차이가 없었다(p>0.05). GS 복합 레진의 와이블 계수는 TP에서 가장 높았으며(m=14.22) 신뢰도가 높았고, CL에서 가장 낮은 값(m=6.09)으로 낮은 신뢰도를 보였다. 복합 레진은 각각의 굽힘 특성 간 매우 높은 상관성을 보였으며($r^2>0.97$), FS와 WOF, FM과와 WOF는 높은 음의 상관성을 보였다. 따라서 굽힘 특성 간의 기계적 거동 평가에 중요한 요인으로 상호 상관성이 입증되었으며, 향후 재료 선택에 있어서 임상 적용 시 중요한 지표로 사용될 수 있을 것으로 생각된다.

GFRP로 보강된 다양한 초기 조건의 콘크리트보의 파괴 거동 평가 (Evaluation of Failure Mode in Concrete Beam Restrengthened with GFRP with Various Initial Conditions)

  • 남진원;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제11권3호
    • /
    • pp.177-183
    • /
    • 2023
  • 유리섬유로 보강된 보강된 보의 경우 초기조건 및 보강형태에 따라 다양한 파괴모드가 발생한다. 본 연구에서는 콘크리트 탄성계수보다 약간 큰 유리섬유 보강재를 적용한 무근 콘크리트보의 파괴거동을 분석하였다. 실험을 위해 24 MPa 강도를 가지는 보를 제작하였으며, 초기 노치, 겹이음, 단부보강, 파이버 앵커 등의 영향을 분석하였다. 노치 및 노치부의 겹이음은 일반보강효과와 비슷한 하중증가를 나타내었는데, 이는 함침된 유리섬유의 에폭시가 노치 단면을 충분히 수복하기 때문이다. 보강하지 않은 기준기편에 비하여 초기 노치의 경우 0.78을, 보강한 경우는 4.43~5.61의 보강효과를 나타내었으며 휨파괴에서 시작되는 계면파괴가 지배적이었다. 높이의 1/3 이상의 단부 스트립과 파이버 앵커를 가진 경우 가장 이상적인 파괴거동(보강재 파단)을 나타내었는데, 일반 보강시편보다 150 % 이상의 파괴하중을 나타내었다.

Simulation of crack initiation and propagation in three point bending test using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Nezamabadi, Maryam Firoozi;Karbala, Mohammadamin
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.453-463
    • /
    • 2018
  • Three points bending flexural test was modelled numerically to study the crack propagation in the pre-cracked beams. The pre-existing double internal cracks inside the beam models were considered to investigate the crack propagation and coalescence paths within the modelled samples. Notch configuration effects on the failure stress were considered too. This numerical analysis shown that the propagation of wing cracks emanating from the tips of the pre-existing internal cracks caused the final breaking of beams specimens. It was also shown that when two notches were overlapped, they both mobilized in the failure process and the failure stress was decreased when the notches were located in centre line. However, the failure stress was increased by increasing the bridge area angle. Finally, it was shown that in all cases, there were good agreements between the discrete element method results and, the other numerical and experimental results. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

GFRP 보강근의 휨.부착특성에 관한 실험적 연구 (An Experimental Study for Flexural Bonding Characteristic of GFRP Rebar)

  • 심종성;오홍섭;주민관;강태성;김우중;이원홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.282-285
    • /
    • 2006
  • This study is to examine bond strength of beam reinforced with GFRP rebar under 4-point bending test by adopting BRITISH STANDARD. The variables were made to have bonding length of 5times$(5d_b)$, 10times$(10d_b)$ and 15times$(15d_b)$ of the nominal diameter of GFRP rebar and were done to analyze the relationship between the bonding strength and the slip. In the result of the test, pull-out failure was dominant in the $5d_b$ and $10d_b$ specimen, both patterns of the pull-out failure and concrete splitting failure appeared in the $10d_b$. On the other hand, the $15d_b$ specimen showed only concrete splitting failure at the end of bonding length. Therefore, it was prove that available bonding length of the GFRP rebar under bending condition on static test is over $15d_b$ then farther research such as fatigue bending test, development of bonding model, FEM parameter study should be performed.

  • PDF

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

Investigation of interface response of reinforced concrete columns retrofitted with composites

  • Achillopoulou, Dimitra V.;Kiziridou, Alexandra N.;Papachatzakis, Georgios A.;Karabinis, Athanasios I.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1337-1358
    • /
    • 2016
  • The current study focuses on the assessment and interface response of reinforced concrete elements with composite materials (carbon fiber reinforced polymers-CFRPs, glass fiber reinforced polymers-GFRPs, textile reinforced mortars-TRM's, near surface mounted bars-NSMs). A description of the transfer mechanisms from concrete elements to the strengthening materials is conducted through analytical models based on failure modes: plate end interfacial debonding and intermediate flexural crack induced interfacial debonding. A database of 55 in total reinforced concrete columns (scale 1:1) is assembled containing elements rehabilitated with various techniques (29 wrapped with CFRP's, 5 wrapped with GFRP's, 4 containing NSM and 4 strengthened with TRM). The failure modes are discussed together with the performance level of each technique as well as the efficiency level in terms of ductility and bearing/ bending capacity. The analytical models' results are in acceptable agreement with the experimental data and can predict the failure modes. Despite the heterogeneity of the elements contained in the aforementioned database the results are of high interest and point out the need to incorporate the analytical expressions in design codes in order to predict the failure mechanisms and the limit states of bearing capacities of each technique.

Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam

  • Albegmprli, Hasan M.;Gulsan, M. Eren;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.39-50
    • /
    • 2019
  • This study presents a comprehensive experimental investigation on mostly encountered types of Reinforced Concrete Haunched Beams (RCHBs) where three modes of RCHBs investigated; the diversity of studied beams makes it a pioneer in this topic. The experimental study consists of twenty RCHBs and four prismatic beams. Effects of important parameters including beam type, the inclination angle, flexure and compressive reinforcement, shear reinforcement on mechanical behavior and failure mode of each mode of RCHBs were examined in detail. Furthermore crack propagation at certain load levels were inspected and visualized for each RCHB mode. The results confirm that RCHBs have different behavior in shear as compared to the prismatic beams. At the same time, different mechanical behavior was observed between the modes of RCHBs. Therefore, RCHBs were classified into three modes according to the inclination shape and mode of failure (Modes A, B and C). However, it was observed that there is no significant difference between RCHBs and prismatic beams regarding flexural behavior. Moreover, a new and unified formula was proposed to predict the critical effective depth of all modes of RCHBs that is very useful to predict the critical section for failure.