• 제목/요약/키워드: flexural bond length

검색결과 65건 처리시간 0.025초

유리섬유쉬트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구 (An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened by GFRP (Glass Fiber Reinforced Polymers))

  • 최기선;유영찬;이진용;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.531-536
    • /
    • 2003
  • It is generally known that RC flexural members strengthened by GFRP(Glass Fiber Reinforced Polymers) tend to be failed by premature bond failure near the flexural-shear cracks happened at the mid-span of beams. It is therefore strongly recommended that premature bond failure must be avoided to insure the intended strengthening effects sufficiently. The various methodologies such as increasing bonded length of GFRP and bonding details including U-shape wrappings and epoxy shear-keys are examined in this study. The bonded length of GFRP are calculated based on the assumed bond strengths of epoxy saturating resin. Total six half scale RC beam specimens were constructed and tested to investigate the effectiveness of each methodologies to prevent the bond failure of GFRP. Test results of each specimens are discussed in this paper.

  • PDF

축소모델 철근콘크리트 보의 휨부착거동에 있어서의 상사성 (Similitude in Flexural Bond Behavior of Small-Scale Reinforced Concrete Beams)

  • 이한선;고동우
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.47-57
    • /
    • 1999
  • The small-scale models have been utilized for the prediction of inelastic behavior of reinforced concrete structures for several decades. The parameters that affect the similitude between the model and prototype are various. Among them, the effect of bond between the model reinforcement and the model concrete is one of the most important factors. The study reported herein is addressed to verifying this similitude in bond behavior. The simple beams which have the lap splice at the midspan were made and flexural tests were performed under two-point loading. The length of lap splice are varied from 0.4ld through 0.7ld and up to 1.0ld where ld is the development length of the reinforcement. The selected scales are 1/1, 1/5, 1/10 and 1/12. Two prototype specimens and three models were tested in addition to the associated material tests and the test results are compared from the viewpoint of similitude.

사점재하 보시험에 의한 국내산 7연상선의 전체정착길이 실험 (An Experimental Test for the Development Length of Domestic Seven-wire Prestressing Strands)

  • 김대훈;유승룡
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.393-398
    • /
    • 1999
  • The main objective of this project is to define the ultimate bond performance of domestic prestressing strands in the precast prestensioned concrete beams. Eight specimens from four different companies were fabricated and tested in this study. Four-point loading tests were performed on the beams of domestic strands with an arbitrary anchorage length. The research has shown, that all seven specimens except one failed in bond are capable of developing their full flexural capacity and the strands within them are fully anchored even with the sudden transfer of frame cutting. Following results are summarized from the tests conducted. 1) All of the specimens are tested at an embedment lengths much shorter than those required by the ACI code, failed in flexure except one failed in bond. 2) It seems that the beam depth can not be an effective variable to estimate the bond length within these sections and length of specimens on this tests. 3) The development length with the stirrup space which are considered for correction factors in the equations of Russel and Paulsgrove, is fully accurate to determine the required length for the beam tested in this research.

  • PDF

Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies

  • Maurel, Olivier;Dekoster, Mickael;Buyle-Bodin, Francois
    • Computers and Concrete
    • /
    • 제2권1호
    • /
    • pp.1-18
    • /
    • 2005
  • This paper presents a study on the effects of localized steel-concrete bond degradation on the flexural behaviour of RC beams. A finite element analysis is undertaken to complete the experimental analysis. The first part deals with an experimental study on beams where bond was removed by using plastic tube at different locations and for various lengths. The flexural behaviour was studied at global scale (load-deflection) and local scale (moment-curvature). The second part, a numerical study using a simplified special finite element (rust element) modelling the rust layer occurring between reinforcement and concrete with corrosion was conducted in order to find the relation between the degree of corrosion and the degradation of the steel-concrete bond. The computed value of the corrosion degree corresponding to the total degradation of bond has been used in a second time to model the tests, in order to evaluate the influence of the loss of bond, the steel cross section reduction, and the combination of both. The results enable to evaluate the influence of the different corrosion effects on the flexural behaviour, according to the length and the location of the corroded zone.

부착응력-상대슬립을 이용한 휨균열폭 산정 (ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP)

  • 고원준;김진호;서봉원;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향 (Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향 (Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams)

  • 신성우;반병렬;안종문;조인철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.195-201
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows ; The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS is increased, the ductility of RC beams is increased because of delaying the peeling of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFS is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

국내산 7연강선의 트렌스퍼 정착부착 실험 (Transfer Bond test on Domestic Sevenwire Prestressing Strands)

  • 김승욱;김대훈;유재천;유승룡
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.387-392
    • /
    • 1999
  • The bond performance of prestressing strands is still not well understood and is still in controversy on the validity of the test results up to today, although it is a basic information to desing the prestressed pretensioned concrete beams. Different transfer length has been found for a product of the same company, but of the different production methods and factories in the United States. It is necessary to determine optimum transfer bond length of the domestic stands because the ultimate flexural and shear capacity in a section of prestressed concrete beams are evaluated under the assumption that the anchorage bond failure shall not happen. The transfer lenght of low-relaxation, Gr 270, and 1/2" seven-wire prestressing strands from four domestic companies will be evaluated by the concrete strain method. The recent concept of the 95% Maximum Average Strain Method suggested by Russel et al. will be considered to obtain the transfer length of domestic strands. It will be also evaluated if the domestic strands are conform to ACI 318-95.8-95.

  • PDF

섬유복합체로 휨보강된 RC보의 박리하중 예측에 관한 연구 (The Prediction of Debonding Strength on the Reinforced Concrete Beams Strengthened with fiber Reinforced Polymer)

  • 홍건호;신영수
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.903-910
    • /
    • 2005
  • 최근 철근콘크리트 구조물의 보강 방법으로 고인장강도를 갖는 섬유복합체를 부재의 외부에 부착시켜 휨 내력을 증진시키는 부착식 보강공법이 널리 사용되고 있으나, 부착되는 섬유복합체의 박리에 의한 파괴강도를 예측하여 설계식에 반영하기 위한 연구는 미흡한 것이 사실이다. 보강재의 박리에 의한 파괴는 부재 전체의 취성적인 파괴를 유도하게 되므로, 부재의 보강설계를 위해서는 이에 대한 검토가 필수적으로 요구되어 진다. 본 연구에서는 보강재의 부착강도에 큰 영향을 미치는 유효부착길이의 개념을 도입하여, 기존 연구 결과로부터 부재의 부착강도를 좌우하게 되는 유효부착길이를 산정 하였으며, 이와 같은 유효부착길이에 의한 보강재의 박리하중을 산정할 수 있는 설계식을 제안하였다. 제안된 설계식은 기존 연구자들의 실험 연구결과와 비교하여 그 신뢰성을 검증하도록 하였으며, 기존 연구자들의 제안식과의 비교를 통하여 본 제안식의 타당성을 증명하였다.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.