• Title/Summary/Keyword: flexural and shear behavior

Search Result 418, Processing Time 0.033 seconds

Behavior Characteristics of U-Shape Wide Composite Beam (U자형 와이드 합성보의 거동특성)

  • Choi, Yun-Cheul;Lee, Sang-Sup;Choi, Hyun-Ki;Park, Keum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.125-133
    • /
    • 2017
  • A parking structure has been on the spotlight to solve the parking problem in downtown area. However, the overall height of parking structure is stipulated less than 8m. Therefore, in this research, the flexural and shear capacity of 'wide composite beam' which can reduce story height and have long span, is evaluated. Based on test result, the rebar in truss did not affect its flexural strength. However, in the case of the specimen without the rebar, the mechanical bond strength decreased due to slip occurrence at 70% of the flexural yield strength. Based on the test of shear-bond behavior, all specimen without shear connector should be reinforced with 2 or more flat bar, because it did not have enough shear bond strength resisted by the mechanical bond mechanism.

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.

Thermo-mechanical and Flexural Analysis of WB-PBGA Package Using Moire Interferometry (무아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석)

  • Han, Bong-Tae;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1302-1308
    • /
    • 2002
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) package are characterized by high sensitive moire interferometry. Moire fringe patterns are recorded and analyzed for several bending loads and temperatures. At the temperature higher than $100^{\circ}C$, the inelastic deformation in solder balls become more dominant, so that the bending of the molding compound decreases while temperature increases. The deformation caused by thermally induced bending is compared with that caused by mechanical bending. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder.

Estimation of Flexural and Shear Strength for Steel Fiber Reinforced Flexural Members without Shear Reinforcements (전단보강이 없는 강섬유보강 콘크리트 휨부재의 휨 및 전단강도의 평가)

  • Oh, Young-Hun;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.257-267
    • /
    • 2008
  • Results of seventy-seven specimens tested by this study and previous research were collected and evaluated to propose the flexural strength and shear strength for flexural members with steel fiber concrete. For strength evaluation, structural parameters such as compressive strength, steel fiber content, tensile reinforcement ratio, and shear span to effective depth ratio are involved. The proposed equations for flexural and shear strength are regarded to give a good prediction for the strength of steel fiber reinforced composite and/or RC beams to compare with equations by previous researchers. Especially, the proposed shear strength equation in this study shows the lowest the mean value, the coefficient of variation and the error ratio among predictions by several equations. Therefore, equations for shear strength and flexure strength, which are proposed in this study are to be useful measure to predict the actual behavior and failure mode of steel fiber reinforced composite beams.

Shear Capacity Curve Model for Circular RC Bridge Columns under Seismic Loads (지진하중을 받는 철근콘크리트 원형교각의 전단성능곡선 모델)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.1-10
    • /
    • 2006
  • Reinforced concrete bridge columns with relatively small aspect ratio show flexure-shear behavior, which is flexural behavior at initial and medium displacement stages and shear failure at final stage. Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a modified shear capacity curve model is proposed and compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

Shear Transfer Strength Evaluation for Ultra-High Performance Fiber Reinforced Concrete (강섬유 보강 초고성능 콘크리트의 전단 전달 모델)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) has a outstanding tensile hardening behaviour after a crack develops, which gives ductility to structures. Existing shear strength model for fiber reinforced concrete is entirely based on crack opening behavior(mode I) which comes from flexural-shear failure, not considering shear-slip behavior(mode II). To find out the mode I and mode II behavior on a crack in UHPFRC simultaneously, maximum shear strength of cracked UHPFRC is investigated from twenty-four push-off test results. The shear stress on a crack is derived as variable of initial crack width and fiber volume ratio. Test results show that shear slippage is proportional to crack opening, which leads to relationship between shear transfer strength and crack width. Based on the test results a hypothesis is proposed for the physical mechanics of shear transfer in UHPFRC by tensile hardening behavior in stead of aggregate interlocking in reinforced concrete. Shear transfer strength based on tensile hardening behavior in UHPFRC is suggested and this suggestion was verified by comparing direct tensile test results and push-off test results.

Seismic performance of moment resisting steel frames retrofitted with coupled steel plate shear walls with different link beams

  • Amir Masoumi Verki;Adolfo Preciado;Pegah Amiri Motlagh
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.591-609
    • /
    • 2023
  • In some buildings, the lateral structural response of steel framed buildings depends on the shear walls and it is very important to study the behavior of these elements under near-field seismic loads. The link beam in the opening of the shear wall between two wall plates is investigated numerically in terms of behavior and effects on frames. Based on the length of the beam and its bending and shear behavior, three types of models are constructed and analyzed, and the behavior of the frames is also compared. The results show that by reducing the length of the link beam, the base shear forces reduce about 20%. The changes in the length of the link beam have different effects on the degree of coupling. Increasing the length of the link beam increases the base shear about 15%. Also, it has both, a positive and a negative effect on the degree of coupling. The increasing strength of the coupling steel shear wall is linearly related to the yield stress of the beam materials, length, and flexural stiffness of the beam. The use of a shorter link beam will increase the additional strength and consequently improving the behavior of the coupling steel shear wall by reducing the stresses in this element. The link beam with large moment of inertia will also increase about 25% the additional strength and as a result the coefficient of behavior of the shear wall.

Analysis and Design on the Flexural Behavior of Composite Basement Wall Through Nonlinear Sectional Analysis (비선형 단면해석을 통한 합성지하벽의 휨 거동 분석 및 설계)

  • Seo, Soo-yeon;Kim, Hyeon-woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to investigate the effects of composition of underground structural wall and H-pile in soil cement. The results of previous experimental studies are re-analyzed and the nonlinear cross-sectional analyses of composite basement walls are performed to verify their nonlinear flexural behavior. Based on the study, it is explained how the gap deformation between H-Pile and RC wall should be considered in the design of flexure of composite underground walls. The nonlinear cross-sectional analysis shows that the load-displacement curves of composite basement wall specimens exhibiting flexural behavior exist between the results of the analysis of the complete and non-composite cases. When predicting the behavior of the composite basement wall by nonlinear cross-sectional analysis, the flexural behavior of the composite basement wall could be suitably predicted by considering the reduction of the composite ratio due to tensile stress acting on shear connectors.

Flexural Behavior of I-beam Composite Hollow Slabs (I형강 합성 중공바닥판의 휨거동)

  • 김대호;심창수;박창규;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.421-426
    • /
    • 2003
  • For the replacement of deteriorated concrete decks or wider-span slab, composite slab could be very attactive due to higher stiffness and strength. Based on the previous research, a modified I-beam composite hollow slab was suggested. In order to investigate the static flexural behavior of the proposed composite slab and to suggest its flexural design method, experiments were performed. Judging from the tests, a composite slab with I-beam having a semi-circle hole showed better structural performance. The effect of web details on the flexural stiffness was negligible. Flexural stiffness, ultimate strength, and ductility of the composite slabs were significantly greater than the RC slab due to composite action. While the failure of the RC slab was punching shear failure, the composite hollow slab showed flexural cracking and failure by yielding of the I-beams and crushing of concrete. Therefore, the current one-way design concept is appropriate for the design of I-beam composite hollow slab.

  • PDF

A Study on the Shear Behavior of Reinforced Hooked Steel Fibrous Concrete Beam (훅트강섬유보강철근콘크리트보의 전단거동에 관한 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.224-228
    • /
    • 1995
  • Addition of hooked steel fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of reinforced hooked steel fibrous concrete beam(RHSFCB) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spacings of stirrups were taken into account as the main parameters. Some equations reported in the literatures, regarding the predictions of the shear strength of RHSFCB have been evaluated statistically based on the total number of 95 test results on RHSFCB failed in shear on shear-flexural mode.

  • PDF