• Title/Summary/Keyword: flexural and shear behavior

Search Result 418, Processing Time 0.296 seconds

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.

Seismic interaction of flexural ductility and shear capacity in reinforced concrete columns

  • Howser, Rachel;Laskar, A.;Mo, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.593-616
    • /
    • 2010
  • The seismic performance of reinforced concrete (RC) bridge columns is a significant issue because the interaction of flexural ductility and shear capacity of such columns with varied amounts of lateral reinforcement is not well established. Several relationships between flexural ductility and shear capacity have been proposed by various researchers in the past. In this paper, a parametric study on RC bridge columns is conducted using a nonlinear finite element program, "Simulation of Concrete Structures (SCS)", developed at the University of Houston. SCS has been previously used to predict the seismic behavior of such columns. The predicted results were compared with the test results obtained from experiments available in literature. Based on the results of the parametric study performed in this paper, a set of new relationships between flexural ductility and shear capacity of RC columns is proposed for seismic design.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.

Strength and deflection prediction of double-curvature reinforced concrete squat walls

  • Bali, Ika;Hwang, Shyh-Jiann
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.501-521
    • /
    • 2007
  • This study presents a model to better understand the shear behavior of reinforced concrete walls subjected to lateral load. The scope of the study is limited to squat walls with height to length ratios not exceeding two, deformed in a double-curvature shape. This study is based on limited knowledge of the shear behavior of low-rise shear walls subjected to double-curvature bending. In this study, the wall ultimate strength is defined as the smaller of flexural and shear strengths. The flexural strength is calculated using a strength-of-material analysis, and the shear strength is predicted according to the softened strut-and-tie model. The corresponding lateral deflection of the walls is estimated by superposition of its flexibility sources of bending, shear and slip. The calculated results of the proposed procedure correlate reasonably well with previously reported experimental results.

An Experimental Study on the Improvement of Flexural Capacity of Reinforced Concrete Shear Wall Using Carbon Fibers (탄소섬유를 사용한 철근콘크리트 전단벽의 휨성능 개선에 관한 실험연구)

  • 하기주;서수연;신종학;전찬목;김성수;이상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.567-572
    • /
    • 2003
  • An experimental work is presented to evaluate the retrofit method for improving the flexural capacity of shear walls. Fives shear wall specimens are designed and retrofitted by using carbon fiber materials such as rod, sheet and plate. Cyclic horizontal loads are applied to the specimens under constant axial load, $0.1f_{ck}A_g$. Test result shows that specimens with additional flexural reinforcement have the increased initial stiffness and deformation capacity. However, the strength is not improved as much as expected. This is because that the flexural reinforcement is pulled out from the foundation at the latter half of cycles. In order to maximize the flexural retrofit, therefore, it is required to study the anchorage behavior of the flexural reinforcement for retrofit.

  • PDF

Flexural-Shear Behavior for RC Columns (철근 콘크리트 기둥의 휨-전단 파괴거동에 관한 연구)

  • 이수곤;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.393-396
    • /
    • 1999
  • This paper presents a truss model for RC columns subjected to axial load and lateral load. The presented model is based on a stress field for the flexural-shear failure of short columns, which represent shear failure and bond splitting failure. Using this model, failure strength and related deformation of RC columns are investigated. Particular emphasis is placed on models capable of representing the interaction between deformation and shear strength.

  • PDF

A Study on the Flexural and Horizontal Shear Behavior of Overlaid Concrete Slabs (폴리머 중간접착증을 가진 철근콘크리트 슬래브의 접합부의 구조거동에 관한 연구)

  • 오병환;이형준;장제욱;이병철;최고일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.59-64
    • /
    • 1993
  • The flexural and horizontal shear behavior of overlaid concrete slabs is investigated in the present study. An experimental program was set up and several series of overlaid concrete slabs have been tested to study the effect of different surface preparation ; and dowels between old slab and overlay under service load. The present study indicates that the overlaid concrete slabs behave integrally with existing bottom slabs up to yield range for rough and doweled joints.

  • PDF

In-Plane Flexural Vibration Analysis of Arches Using Three-Noded Hybrid-Mixed Element (3절점 혼합유한요소를 이용한 아치의 면내굽힘진동해석)

  • Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • Curved beams are more efficient in transfer of loads than straight beams because the transfer is effected by bending, shear and membrane action. The finite element method is a versatile method for solving structural mechanics problems and curved beam problems have been solved using this method by many author. In this study, a new three-noded hybrid-mixed curved beam element is proposed to investigate the in-plane flexural vibration behavior of arches depending on the curvature, aspect ratio and boundary conditions, etc. The proposed element including the effect of shear deformation is based on the Hellinger-Reissner variational principle, and employs the quadratic displacement functions and consistent linear stress functions. The stress parameters are then eliminated from the stationary condition of the variational principle so that the standard stiffness equations are obtained. Several numerical examples confirm the accuracy of the proposed finite element and also show the dynamic behavior of arches with various shapes.

  • PDF

Flexural-Shear Failure Behavior in I-Shape RC Beams (I형 단면 RC보의 휨-전단파괴 거동에 관한 연구)

  • Moon, Jong-Soo;Yum, Hwan-Seok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.377-380
    • /
    • 1999
  • This paper dscribes an experimental investigation into the cause of flexural-shear failure in RC beams. The experimental variables are bottom flange width and tension bar location. Then these test results were compared and analyzed to deduce the major cause of critical-shear cracking. As a result, it was found that the propagation of the critical shear crack depended exclusively on the intensity of horizontal cracking.

  • PDF

Flexural behavior of cold-formed steel concrete composite beams

  • Valsa Ipe, T.;Sharada Bai, H.;Manjula Vani, K.;Zafar Iqbal, Merchant Mohd
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.105-120
    • /
    • 2013
  • Flexural behavior of thin walled steel-concrete composite sections as cross sections for beams is investigated by conducting an experimental study supported by applicable analytical predictions. The experimental study consists of testing up to failure, simply supported beams of effective span 1440 mm under two point loading. The test specimens consisted of composite box and channel (with lip placed on tension side and compression side) sections, the behavior of which was compared with companion empty sections. To understand the role of shear connectors in developing the composite action, some of the composite sections were provided with novel simple bar type and conventional bolt type shear connectors in the shear zone of beams. Two RCC beams having equivalent ultimate moment carrying capacities as that of composite channel and box sections were also considered in the study. The study showed that the strength to weight ratio of composite beams is much higher than RCC beams and ductility index is also more than RCC and empty beams. The analytical predictions were found to compare fairly well with the experimental results, thereby validating the applicability of rigid plastic theory to cold-formed steel concrete composite beams.